The quantum deformed mirror TBA

Stijn J. van Tongeren

The quantum deformed mirror TBA

Stijn J. van Tongeren

Work done in collaboration with G. Arutyunov and M. de Leeuw, [1208.3478]

Introduction

Arutyunov, Frolov '09
Gromov, Kazakov, Vieira '09
Bombardelli, Fioravanti, Tateo '09
Gromov, Kazakov, Kozak, Vieira ’09

Introduction

The q-deformed mirror TBA

Stijn J. van
Tongeren

Motivation

The q-deformed mirror TBA

Stijn J. van
Tongeren

Motivation

The q-deformed mirror TBA

- Interesting model

Motivation

The q-deformed mirror TBA

- Interesting model
- Integrability: trigonometric rather than rational

Motivation

The q-deformed mirror TBA

- Interesting model
- Integrability: trigonometric rather than rational
- TBA: interesting structure (XXZ)

Motivation

The q-deformed mirror TBA

Stijn J. van
Tongeren

- Interesting model
- Integrability: trigonometric rather than rational
- TBA: interesting structure (XXZ)
- (Thermodynamics of) the q-deformed Hubbard model

Alcaraz and Bariev '99

Motivation

The q-deformed
mirror TBA
Stijn J. van
Tongeren

- Interesting model
- Integrability: trigonometric rather than rational
- TBA: interesting structure (XXZ)
- (Thermodynamics of) the q-deformed Hubbard model

Alcaraz and Bariev '99

- Conjuctured relation to Pohlmeyer reduced string theory

Motivation

The q-deformed
mirror TBA
Stijn J. van
Tongeren

- Interesting model
- Integrability: trigonometric rather than rational
- TBA: interesting structure (XXZ)
- (Thermodynamics of) the q-deformed Hubbard model

Alcaraz and Bariev '99

- Conjuctured relation to Pohlmeyer reduced string theory
- q-deformed theory interpolates

Motivation

The q-deformed
mirror TBA
Stijn J. van
Tongeren

- Interesting model
- Integrability: trigonometric rather than rational
- TBA: interesting structure (XXZ)
- (Thermodynamics of) the q-deformed Hubbard model

Alcaraz and Bariev '99

- Conjuctured relation to Pohlmeyer reduced string theory
- q-deformed theory interpolates
- $q=1, g$ arbitrary: $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ string theory

Motivation

The q-deformed

- Interesting model
- Integrability: trigonometric rather than rational
- TBA: interesting structure (XXZ)
- (Thermodynamics of) the q-deformed Hubbard model

Alcaraz and Bariev '99

- Conjuctured relation to Pohlmeyer reduced string theory
- q-deformed theory interpolates
- $q=1, g$ arbitrary: $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ string theory
- $q=e^{i \pi / k}, g \rightarrow \infty$: solitons of ssssG

Motivation

The q-deformed
mirror TBA
Stijn J. van
Tongeren

- Interesting model
- Integrability: trigonometric rather than rational
- TBA: interesting structure (XXZ)
- (Thermodynamics of) the q-deformed Hubbard model

Alcaraz and Bariev '99

- Conjuctured relation to Pohlmeyer reduced string theory
- q-deformed theory interpolates
- $q=1, g$ arbitrary: $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ string theory
- $q=e^{i \pi / k}, g \rightarrow \infty$: solitons of ssssG
- Complementary approach to $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ mirror TBA

Motivation

- Interesting model
- Integrability: trigonometric rather than rational
- TBA: interesting structure (XXZ)
- (Thermodynamics of) the q-deformed Hubbard model

Alcaraz and Bariev '99

- Conjuctured relation to Pohlmeyer reduced string theory
- q-deformed theory interpolates
- $q=1, g$ arbitrary: $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ string theory
- $q=e^{i \pi / k}, g \rightarrow \infty$: solitons of ssssG
- Complementary approach to $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ mirror TBA
- Physical 'regularization' of the problem ($\left.q=e^{i \pi / k}\right)$

Motivation

- Interesting model
- Integrability: trigonometric rather than rational
- TBA: interesting structure (XXZ)
- (Thermodynamics of) the q-deformed Hubbard model

Alcaraz and Bariev '99

- Conjuctured relation to Pohlmeyer reduced string theory
- q-deformed theory interpolates
- $q=1, g$ arbitrary: $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ string theory
- $q=e^{i \pi / k}, g \rightarrow \infty$: solitons of ssssG
- Complementary approach to $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ mirror TBA
- Physical 'regularization' of the problem ($\left.q=e^{i \pi / k}\right)$
- Wider perspective

Motivation

- Interesting model
- Integrability: trigonometric rather than rational
- TBA: interesting structure (XXZ)
- (Thermodynamics of) the q-deformed Hubbard model

Alcaraz and Bariev '99

- Conjuctured relation to Pohlmeyer reduced string theory
- q-deformed theory interpolates
- $q=1, g$ arbitrary: $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ string theory
- $q=e^{i \pi / k}, g \rightarrow \infty$: solitons of ssssG
- Complementary approach to $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ mirror TBA
- Physical 'regularization' of the problem $\left(q=e^{i \pi / k}\right)$
- Wider perspective
- Possible (partial) applications to particular deformed backgrounds

Outline

Finite size AdS/CFT

The q-deformed model and its bound states
q-deformed spin chain TBA

The q-deformed $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ mirror TBA

Concluding remarks

Finite size integrability in $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$

The q-deformed mirror TBA

Stijn J. van
Tongeren

Finite size integrability in $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$

The q-deformed
mirror TBA
Stijn J. van
Tongeren
Finite size
AdS/CFT
Conclusion

- TBA describes finite size string spectrum via a mirror model

Zamolodchikov '89
Ambjorn, Janik and Kristjansen '05
Arutyunov and Frolov '07

Finite size integrability in $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$

```
The q-deformed
    mirror TBA
- TBA describes finite size string spectrum via a mirror model

Zamolodchikov '89
Ambjorn, Janik and Kristjansen '05
Arutyunov and Frolov '07
- Based on mirror Bethe equations from \(\mathfrak{p s u}(2 \mid 2)^{2}\) invariant \(S\)-matrix

\section*{Finite size integrability in \(\mathrm{AdS}_{5} / \mathrm{CFT}_{4}\)}
- TBA describes finite size string spectrum via a mirror model

Zamolodchikov '89
Ambjorn, Janik and Kristjansen '05
- Based on mirror Bethe equations from \(\mathfrak{p s u}(2 \mid 2)^{2}\) invariant \(S\)-matrix
- Spectrum of excitations in TDL: string hypothesis

\section*{Finite size integrability in \(\mathrm{AdS}_{5} / \mathrm{CFT}_{4}\)}
- TBA describes finite size string spectrum via a mirror model
- Based on mirror Bethe equations from \(\mathfrak{p s u}(2 \mid 2)^{2}\) invariant \(S\)-matrix
- Spectrum of excitations in TDL: string hypothesis

Arutyunov and Frolov '09
- Today: the quantum deformation of this story (at roots of unity)

\section*{Finite size integrability in \(\mathrm{AdS}_{5} / \mathrm{CFT}_{4}\)}
- TBA describes finite size string spectrum via a mirror model
- Based on mirror Bethe equations from \(\mathfrak{p s u}(2 \mid 2)^{2}\) invariant \(S\)-matrix
- Spectrum of excitations in TDL: string hypothesis

Arutyunov and Frolov '09
- Today: the quantum deformation of this story (at roots of unity)
- \(q\)-deformed \(\mathfrak{p s u}(2 \mid 2)_{\text {c.e. }}^{2}\). symmetry

\section*{Finite size integrability in \(\mathrm{AdS}_{5} / \mathrm{CFT}_{4}\)}
- TBA describes finite size string spectrum via a mirror model
- Based on mirror Bethe equations from \(\mathfrak{p s u}(2 \mid 2)^{2}\) invariant \(S\)-matrix
- Spectrum of excitations in TDL: string hypothesis

Arutyunov and Frolov '09
- Today: the quantum deformation of this story (at roots of unity)
- \(q\)-deformed \(\mathfrak{p s u}(2 \mid 2)_{\text {c.e. }}^{2}\). symmetry
- \(\mathfrak{p s u}_{q}(2 \mid 2)^{2}\) invariant \(S\)-matrix

\section*{Finite size integrability in \(\mathrm{AdS}_{5} / \mathrm{CFT}_{4}\)}
- TBA describes finite size string spectrum via a mirror model
- Based on mirror Bethe equations from \(\mathfrak{p s u}(2 \mid 2)^{2}\) invariant \(S\)-matrix
- Spectrum of excitations in TDL: string hypothesis

Arutyunov and Frolov '09
- Today: the quantum deformation of this story (at roots of unity)
- \(q\)-deformed \(\mathfrak{p s u}(2 \mid 2)_{\text {c.e. }}^{2}\). symmetry
- \(\mathfrak{p s u}_{q}(2 \mid 2)^{2}\) invariant \(S\)-matrix
- Deformed model

\section*{Finite size integrability in \(\mathrm{AdS}_{5} / \mathrm{CFT}_{4}\)}
- TBA describes finite size string spectrum via a mirror model
- Based on mirror Bethe equations from \(\mathfrak{p s u}(2 \mid 2)^{2}\) invariant \(S\)-matrix
- Spectrum of excitations in TDL: string hypothesis

Arutyunov and Frolov '09
- Today: the quantum deformation of this story (at roots of unity)
- \(q\)-deformed \(\mathfrak{p s u}(2 \mid 2)_{\text {c.e. }}^{2}\). symmetry
- \(\mathfrak{p s u}_{q}(2 \mid 2)^{2}\) invariant \(S\)-matrix
- Deformed model
- Thermodynamic limit: different string hypothesis

\section*{\(q\)-deformed \(\mathfrak{s u}(2 \mid 2)\)}

The \(q\)-deformed mirror TBA
- The \(\mathfrak{s u}(2 \mid 2)\) superalgebra in Chevalley-Serre basis \((3 \times E, F, H)\)
\[
\left[H_{i}, H_{j}\right]=0,\left[H_{i}, E / F_{j}\right]= \pm A_{i j} E / F_{j}, \quad\left[E_{i}, F_{j}\right\}=\delta_{i j} D_{i} H_{i}
\]
with
\[
A=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 0 & 1 \\
0 & 1 & -2
\end{array}\right), D=\operatorname{diag}(1,-1,-1)
\]
plus Serre relations

\section*{\(q\)-deformed \(\mathfrak{s u}(2 \mid 2)\)}
- The \(\mathfrak{s u}(2 \mid 2)\) superalgebra in Chevalley-Serre basis \((3 \times E, F, H)\)
\[
\left[H_{i}, H_{j}\right]=0,\left[H_{i}, E / F_{j}\right]= \pm A_{i j} E / F_{j},\left[E_{i}, F_{j}\right\}=\delta_{i j} D_{i} H_{i}
\]
with
\[
A=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 0 & 1 \\
0 & 1 & -2
\end{array}\right), \quad D=\operatorname{diag}(1,-1,-1)
\]
plus Serre relations
- \(U(\mathfrak{s u}(2 \mid 2))\) can be deformed to \(U_{q}(\mathfrak{s u}(2 \mid 2))\)

\section*{\(q\)-deformed \(\mathfrak{s u}(2 \mid 2)\)}
- The \(\mathfrak{s u}(2 \mid 2)\) superalgebra in Chevalley-Serre basis \((3 \times E, F, H)\)
\[
\left[H_{i}, H_{j}\right]=0,\left[H_{i}, E / F_{j}\right]= \pm A_{i j} E / F_{j}, \quad\left[E_{i}, F_{j}\right\}=\delta_{i j} D_{i} H_{i}
\]
with
\[
A=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 0 & 1 \\
0 & 1 & -2
\end{array}\right), \quad D=\operatorname{diag}(1,-1,-1)
\]
plus Serre relations
- \(U(\mathfrak{s u}(2 \mid 2))\) can be deformed to \(U_{q}(\mathfrak{s u}(2 \mid 2))\)
\[
\left[E_{i}, F_{j}\right\}=\delta_{i j} D_{i} H_{i} \rightarrow \delta_{i j} D_{i}\left[H_{i}\right]_{q}, \quad \text { where }[x]_{q} \equiv \frac{q^{x}-q^{-x}}{q-q^{-1}}
\]

\section*{\(q\)-deformed \(\mathfrak{s u}(2 \mid 2)\)}
- The \(\mathfrak{s u}(2 \mid 2)\) superalgebra in Chevalley-Serre basis \((3 \times E, F, H)\)
\[
\left[H_{i}, H_{j}\right]=0,\left[H_{i}, E / F_{j}\right]= \pm A_{i j} E / F_{j}, \quad\left[E_{i}, F_{j}\right\}=\delta_{i j} D_{i} H_{i}
\]
with
\[
A=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 0 & 1 \\
0 & 1 & -2
\end{array}\right), \quad D=\operatorname{diag}(1,-1,-1)
\]
plus Serre relations
- \(U(\mathfrak{s u}(2 \mid 2))\) can be deformed to \(U_{q}(\mathfrak{s u}(2 \mid 2))\)
\[
\left[E_{i}, F_{j}\right\}=\delta_{i j} D_{i} H_{i} \rightarrow \delta_{i j} D_{i}\left[H_{i}\right]_{q}, \quad \text { where }[x]_{q} \equiv \frac{q^{x}-q^{-x}}{q-q^{-1}}
\]
plus (deformed) Serre relations

\section*{\(q\)-deformed \(\mathfrak{s u}(2 \mid 2)\)}
- The \(\mathfrak{s u}(2 \mid 2)\) superalgebra in Chevalley-Serre basis \((3 \times E, F, H)\)
\[
\left[H_{i}, H_{j}\right]=0,\left[H_{i}, E / F_{j}\right]= \pm A_{i j} E / F_{j}, \quad\left[E_{i}, F_{j}\right\}=\delta_{i j} D_{i} H_{i}
\]
with
\[
A=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 0 & 1 \\
0 & 1 & -2
\end{array}\right), \quad D=\operatorname{diag}(1,-1,-1)
\]
plus Serre relations
- \(U(\mathfrak{s u}(2 \mid 2))\) can be deformed to \(U_{q}(\mathfrak{s u}(2 \mid 2))\)
\[
\left[E_{i}, F_{j}\right\}=\delta_{i j} D_{i} H_{i} \rightarrow \delta_{i j} D_{i}\left[H_{i}\right]_{q}, \quad \text { where }[x]_{q} \equiv \frac{q^{x}-q^{-x}}{q-q^{-1}}
\]
plus (deformed) Serre relations
- We take \(q=e^{i \pi / k}\) with integer \(k>2\)

\section*{\(q\)-deformed scattering theory}
```

The q-deformed
mirror TBA
Stijn.J. van
Tongeren

```
- \(q\)-deformation extends to \(\mathfrak{p s u}(2 \mid 2) \ltimes \mathbb{R}^{3}\)
- \(\mathfrak{p s u}_{q}(2 \mid 2)\) invariant \(R\)-matrix

Beisert and Koroteev '08

\section*{\(q\)-deformed scattering theory}
```

The q-deformed
mirror TBA
Tongeren

```
- \(q\)-deformation extends to \(\mathfrak{p s u}(2 \mid 2) \ltimes \mathbb{R}^{3}\)
- \(\mathfrak{p s u}_{q}(2 \mid 2)\) invariant \(R\)-matrix
- \(\mathrm{S}=S_{0} R \otimes R\)

\section*{\(q\)-deformed scattering theory}
```

The q-deformed
mirror TBA

- q-deformation extends to $\mathfrak{p s u}(2 \mid 2) \ltimes \mathbb{R}^{3}$
- $\mathfrak{p s u}_{q}(2 \mid 2)$ invariant R-matrix
- $\mathrm{S}=S_{0} R \otimes R$
- S_{0} can be found such that S satisfies crossing
- $\mathfrak{p s u}_{q}(2 \mid 2)^{2}$ invariant S-matrix

q-deformed scattering theory

The q-deformed

- q-deformation extends to $\mathfrak{p s u}(2 \mid 2) \ltimes \mathbb{R}^{3}$
- $\mathfrak{p s u}_{q}(2 \mid 2)$ invariant R-matrix
- $\mathrm{S}=S_{0} R \otimes R$
- S_{0} can be found such that S satisfies crossing
- $\mathfrak{p s u}_{q}(2 \mid 2)^{2}$ invariant S-matrix
- S-matrix is physically pseudo-unitary ($S^{\dagger}=B S^{-1} B^{-1}, B$ Herm.)

q-deformed scattering theory

The q-deformed mirror TBA

- q-deformation extends to $\mathfrak{p s u}(2 \mid 2) \ltimes \mathbb{R}^{3}$
- $\mathfrak{p s u}_{q}(2 \mid 2)$ invariant R-matrix
- $\mathrm{S}=S_{0} R \otimes R$
- S_{0} can be found such that S satisfies crossing
- $\mathfrak{p s u}_{q}(2 \mid 2)^{2}$ invariant S-matrix
- S-matrix is physically pseudo-unitary ($S^{\dagger}=B S^{-1} B^{-1}, B$ Herm.)
- Kinematics of the model? How are excitations described?

q-deformed scattering theory

The q-deformed mirror TBA

- q-deformation extends to $\mathfrak{p s u}(2 \mid 2) \ltimes \mathbb{R}^{3}$
- $\mathfrak{p s u}_{q}(2 \mid 2)$ invariant R-matrix
- $\mathrm{S}=S_{0} R \otimes R$
- S_{0} can be found such that S satisfies crossing
- $\mathfrak{p s u}_{q}(2 \mid 2)^{2}$ invariant S-matrix
- S-matrix is physically pseudo-unitary ($S^{\dagger}=B S^{-1} B^{-1}, B$ Herm. $)$
- Kinematics of the model? How are excitations described?
- Short representations labeled by central charges U and $V\left(=q^{C}\right)$ satisfying shortening condition

q-deformed scattering theory

The q-deformed mirror TBA

Stijn J. van Tongeren

- q-deformation extends to $\mathfrak{p s u}(2 \mid 2) \ltimes \mathbb{R}^{3}$
- $\mathfrak{p s u}_{q}(2 \mid 2)$ invariant R-matrix
- $\mathrm{S}=S_{0} R \otimes R$
- S_{0} can be found such that S satisfies crossing
- $\mathfrak{p s u}_{q}(2 \mid 2)^{2}$ invariant S-matrix
- S-matrix is physically pseudo-unitary ($S^{\dagger}=B S^{-1} B^{-1}, B$ Herm.)
- Kinematics of the model? How are excitations described?
- Short representations labeled by central charges U and $V\left(=q^{C}\right)$ satisfying shortening condition
- Parametrized by deformed $x^{ \pm}$variables

q-deformed scattering theory

The q-deformed mirror TBA

- q-deformation extends to $\mathfrak{p s u}(2 \mid 2) \ltimes \mathbb{R}^{3}$
- $\mathfrak{p s u}_{q}(2 \mid 2)$ invariant R-matrix
- $\mathrm{S}=S_{0} R \otimes R$
- S_{0} can be found such that S satisfies crossing
- $\mathfrak{p s u}_{q}(2 \mid 2)^{2}$ invariant S-matrix
- S-matrix is physically pseudo-unitary ($S^{\dagger}=B S^{-1} B^{-1}, B$ Herm.)
- Kinematics of the model? How are excitations described?
- Short representations labeled by central charges U and $V\left(=q^{C}\right)$ satisfying shortening condition
- Parametrized by deformed $x^{ \pm}$variables
- Natural definition of E and p in terms of U and V

Parametrizing the fundamental representation

- Central charges in terms of $x^{ \pm}$

$$
U^{2}=\frac{1}{q} \frac{x^{+}+\xi}{x^{-}+\xi}, \quad V^{2}=q \frac{x^{+}}{x^{-}} \frac{x^{-}+\xi}{x^{+}+\xi}
$$

Parametrizing the fundamental representation

- Central charges in terms of $x^{ \pm}$

$$
U^{2}=\frac{1}{q} \frac{x^{+}+\xi}{x^{-}+\xi}, \quad V^{2}=q \frac{x^{+}}{x^{-}} \frac{x^{-}+\xi}{x^{+}+\xi}
$$

- Then the shortening condition is (equivalent to)

$$
\frac{1}{q}\left(x^{+}+\frac{1}{x^{+}}\right)-q\left(x^{-}+\frac{1}{x^{-}}\right)=\left(q-\frac{1}{q}\right)\left(\xi+\frac{1}{\xi}\right)
$$

with

$$
\xi=-\frac{i}{2} \frac{g\left(q-q^{-1}\right)}{\sqrt{1-\frac{g^{2}}{4}\left(q-q^{-1}\right)^{2}}}
$$

The dispersion relation

The q-deformed mirror TBA

Stijn J. van
Tongeren

- To connect smoothly with string theory $(q=1)$ we define:

$$
V^{2} \equiv q^{H}, \quad U^{2} \equiv e^{i p}
$$

The dispersion relation

The q-deformed mirror TBA

Stijn J. van
Tongeren

- To connect smoothly with string theory $(q=1)$ we define:

$$
V^{2} \equiv q^{H}, \quad U^{2} \equiv e^{i p}
$$

- Then shortening $=$ deformed string dispersion

The dispersion relation

The q-deformed mirror TBA

- To connect smoothly with string theory $(q=1)$ we define:

$$
V^{2} \equiv q^{H}, \quad U^{2} \equiv e^{i p}
$$

- Then shortening $=$ deformed string dispersion
- $H \rightarrow i \tilde{p}, p \rightarrow i \tilde{H}:$ mirror dispersion $\left(q=e^{i \pi / k}\right)$

The dispersion relation

- To connect smoothly with string theory $(q=1)$ we define:

$$
V^{2} \equiv q^{H}, \quad U^{2} \equiv e^{i p}
$$

- Then shortening $=$ deformed string dispersion
- $H \rightarrow i \tilde{p}, p \rightarrow i \tilde{H}:$ mirror dispersion $\left(q=e^{i \pi / k}\right)$

$$
\tilde{H}=2 \operatorname{arcsinh}\left(\frac{1}{g} \frac{\sin \frac{\pi}{2 k}}{\sin \frac{\pi}{k}} \sqrt{1+\left(1+g^{2} \sin ^{2} \frac{\pi}{k}\right) \frac{\sinh ^{2} \frac{\pi}{2 k} \tilde{p}}{\sin ^{2} \frac{\pi}{2 k}}}\right)
$$

The dispersion relation

- To connect smoothly with string theory $(q=1)$ we define:

$$
V^{2} \equiv q^{H}, \quad U^{2} \equiv e^{i p}
$$

- Then shortening $=$ deformed string dispersion
- $H \rightarrow i \tilde{p}, p \rightarrow i \tilde{H}:$ mirror dispersion $\left(q=e^{i \pi / k}\right)$

$$
\tilde{H}=2 \operatorname{arcsinh}\left(\frac{1}{g} \frac{\sin \frac{\pi}{2 k}}{\sin \frac{\pi}{k}} \sqrt{1+\left(1+g^{2} \sin ^{2} \frac{\pi}{k}\right) \frac{\sinh ^{2} \frac{\pi}{2 k} \tilde{p}}{\sin ^{2} \frac{\pi}{2 k}}}\right)
$$

- ssssG connection: rescale $\tilde{H} \rightarrow \frac{\tilde{H}}{g}$ and $\tilde{p} \rightarrow \frac{k}{\pi} \frac{\tilde{p}}{g}$, limit $g \rightarrow \infty$

The dispersion relation

- To connect smoothly with string theory $(q=1)$ we define:

$$
V^{2} \equiv q^{H}, \quad U^{2} \equiv e^{i p}
$$

- Then shortening $=$ deformed string dispersion
- $H \rightarrow i \tilde{p}, p \rightarrow i \tilde{H}:$ mirror dispersion $\left(q=e^{i \pi / k}\right)$

$$
\tilde{H}=2 \operatorname{arcsinh}\left(\frac{1}{g} \frac{\sin \frac{\pi}{2 k}}{\sin \frac{\pi}{k}} \sqrt{1+\left(1+g^{2} \sin ^{2} \frac{\pi}{k}\right) \frac{\sinh ^{2} \frac{\pi}{2 k} \tilde{p}}{\sin ^{2} \frac{\pi}{2 k}}}\right)
$$

- ssssG connection: rescale $\tilde{H} \rightarrow \frac{\tilde{H}}{g}$ and $\tilde{p} \rightarrow \frac{k}{\pi} \frac{\tilde{p}}{g}$, limit $g \rightarrow \infty$

$$
\tilde{H}^{2}-\tilde{p}^{2}=\cos ^{-2} \frac{\pi}{2 k}
$$

The dispersion relation

- To connect smoothly with string theory $(q=1)$ we define:

$$
V^{2} \equiv q^{H}, \quad U^{2} \equiv e^{i p}
$$

- Then shortening $=$ deformed string dispersion
- $H \rightarrow i \tilde{p}, p \rightarrow i \tilde{H}:$ mirror dispersion $\left(q=e^{i \pi / k}\right)$

$$
\tilde{H}=2 \operatorname{arcsinh}\left(\frac{1}{g} \frac{\sin \frac{\pi}{2 k}}{\sin \frac{\pi}{k}} \sqrt{1+\left(1+g^{2} \sin ^{2} \frac{\pi}{k}\right) \frac{\sinh ^{2} \frac{\pi}{2 k} \tilde{p}}{\sin ^{2} \frac{\pi}{2 k}}}\right)
$$

- ssssG connection: rescale $\tilde{H} \rightarrow \frac{\tilde{H}}{g}$ and $\tilde{p} \rightarrow \frac{k}{\pi} \frac{\tilde{p}}{g}$, limit $g \rightarrow \infty$

$$
\tilde{H}^{2}-\tilde{p}^{2}=\cos ^{-2} \frac{\pi}{2 k}
$$

- As for $q=1$, this can be uniformized on a torus

The dispersion relation

- To connect smoothly with string theory $(q=1)$ we define:

$$
V^{2} \equiv q^{H}, \quad U^{2} \equiv e^{i p}
$$

- Then shortening $=$ deformed string dispersion
- $H \rightarrow i \tilde{p}, p \rightarrow i \tilde{H}$: mirror dispersion $\left(q=e^{i \pi / k}\right)$

$$
\tilde{H}=2 \operatorname{arcsinh}\left(\frac{1}{g} \frac{\sin \frac{\pi}{2 k}}{\sin \frac{\pi}{k}} \sqrt{1+\left(1+g^{2} \sin ^{2} \frac{\pi}{k}\right) \frac{\sinh ^{2} \frac{\pi}{2 k} \tilde{p}}{\sin ^{2} \frac{\pi}{2 k}}}\right)
$$

- $\operatorname{ssss} G$ connection: rescale $\tilde{H} \rightarrow \frac{\tilde{H}}{g}$ and $\tilde{p} \rightarrow \frac{k}{\pi} \frac{\tilde{p}}{g}$, limit $g \rightarrow \infty$

$$
\tilde{H}^{2}-\tilde{p}^{2}=\cos ^{-2} \frac{\pi}{2 k}
$$

- As for $q=1$, this can be uniformized on a torus
("torus $=$ space of short reps")

The dispersion relation on the torus

The q-deformed
mirror TBA
Stijn J. van
Tongeren

The dispersion relation on the torus

The q-deformed mirror TBA

Stijn J. van
Tongeren

The q-deformed model

Undeformed:

$\operatorname{Im} x^{+}>0, \operatorname{Im} x^{-}>0$,
$\operatorname{Im} x^{+}<0, \operatorname{Im} x^{-}<0$,
$\operatorname{Im} x^{+}>0, \operatorname{Im} x^{-}<0$,
$\operatorname{Im} x^{+}<0, \operatorname{Im} x^{-}>0$,

шш
域 $\left|x^{+}\right|>1,\left|x^{-}\right|<1$,

绿 $\left|x^{+}\right|<1,\left|x^{-}\right|>1$,

The dispersion relation on the torus

The q-deformed mirror TBA

Stijn J. van
Tongeren

The q-deformed model

Deformed:

$\operatorname{Im} x^{+}>0, \operatorname{Im} x^{-}>0$,
$\operatorname{Im} x^{+}<0, \operatorname{Im} x^{-}<0$,
$\operatorname{Im} x^{+}>0, \operatorname{Im} x^{-}<0$,
$\operatorname{Im} x^{+}<0, \operatorname{Im} x^{-}>0$,

域 $\left|x^{+}\right|>1,\left|x^{-}\right|<1$,
$\left|x^{+}\right|<1,\left|x^{-}\right|>1$
$\left|x^{+}\right|<1,\left|x^{-}\right|<1$

The mirror Bethe equations

The q-deformed mirror TBA

- Recall $\mathrm{S}=S_{0} R \otimes R$

The mirror Bethe equations

The q-deformed mirror TBA

Stijn J. van
Tongeren

- Recall $\mathrm{S}=S_{0} R \otimes R$
- Mirror ABA:

$$
1=e^{i \bar{\eta} I R} \prod_{i \neq l}^{K^{1}} \frac{1}{\sigma^{2}} \frac{x_{i}^{+}-x_{l}^{-}}{x_{i}^{-}-x_{l}^{+}} \frac{1-\frac{1}{x_{i}^{-} x_{l}^{+}}}{1-\frac{1}{x_{i}^{+} x_{l}^{-}}} \prod_{\alpha=1}^{2} \prod_{i=1}^{\left.K_{l}^{\mathrm{I}} \alpha\right)} \sqrt{\bar{q}} \frac{y_{i}^{(\alpha)}-x_{l}^{-}}{y_{i}^{(\alpha)}-x_{l}^{+}} \sqrt{\frac{x_{l}^{+}}{x_{l}^{-}}},
$$

The mirror Bethe equations

The q-deformed mirror TBA

Stijn J. van
Tongeren

- Recall $\mathrm{S}=S_{0} R \otimes R$
- Mirror ABA:

$$
1=e^{i \bar{p}_{l} R} \prod_{i \neq l}^{K^{\mathrm{I}}} \frac{1}{\sigma^{2}} \frac{x_{i}^{+}-x_{l}^{-}}{x_{i}^{-}-x_{l}^{+}} \frac{1-\frac{1}{x_{i}^{-} x_{l}^{+}}}{1-\frac{1}{x_{i}^{+} x_{l}^{-}}} \prod_{\alpha=1}^{2} \prod_{i=1}^{K_{(\alpha)}^{\mathrm{I}}} \sqrt{q} \frac{y_{i}^{(\alpha)}-x_{l}^{-}}{y_{i}^{(\alpha)}-x_{l}^{+}} \sqrt{\frac{x_{l}^{+}}{x_{l}^{-}}},
$$

with two sets of

$$
\begin{aligned}
1 & =\prod_{i=1}^{K^{\mathrm{I}}} \sqrt{q} \frac{y_{m}-x_{i}^{-}}{y_{m}-x_{i}^{+}} \sqrt{\frac{x_{i}^{+}}{x_{i}^{-}}} \prod_{i=1}^{K^{\mathrm{III}}} \frac{\sinh \frac{\pi g}{2 k}\left(v_{m}-w_{i}-\frac{i}{g}\right)}{\sinh \frac{\pi g}{2 k}\left(v_{m}-w_{i}+\frac{i}{g}\right)} \\
-1 & =\prod_{i=1}^{K^{\mathrm{II}}} \frac{\sinh \frac{\pi g}{2 k}\left(w_{n}-v_{i}+\frac{i}{g}\right)}{\sinh \frac{\pi g}{2 k}\left(w_{n}-v_{i}-\frac{i}{g}\right)} \prod_{j=1}^{K^{\mathrm{III}}} \frac{\sinh \frac{\pi g}{2 k}\left(w_{n}-w_{j}-\frac{2 i}{g}\right)}{\sinh \frac{\pi g}{2 k}\left(w_{n}-w_{j}+\frac{2 i}{g}\right)}
\end{aligned}
$$

The mirror Bethe equations

The q-deformed mirror TBA

Stijn J. van
Tongeren

- Recall $\mathrm{S}=S_{0} R \otimes R$
- Mirror ABA:

$$
1=e^{i \bar{p}_{l} R} \prod_{i \neq l}^{K^{\mathrm{I}}} \frac{1}{\sigma^{2}} \frac{x_{i}^{+}-x_{l}^{-}}{x_{i}^{-}-x_{l}^{+}} \frac{1-\frac{1}{x_{i}^{-} x_{l}^{+}}}{1-\frac{1}{x_{i}^{+} x_{l}^{-}}} \prod_{\alpha=1}^{2} \prod_{i=1}^{K_{(\alpha)}^{\mathrm{I}}} \sqrt{q} \frac{y_{i}^{(\alpha)}-x_{l}^{-}}{y_{i}^{(\alpha)}-x_{l}^{+}} \sqrt{\frac{x_{l}^{+}}{x_{l}^{-}}},
$$

with two sets of

$$
\begin{aligned}
1 & =\prod_{i=1}^{K^{\mathrm{I}}} \sqrt{q} \frac{y_{m}-x_{i}^{-}}{y_{m}-x_{i}^{+}} \sqrt{\frac{x_{i}^{+}}{x_{i}^{-}}} \prod_{i=1}^{K^{\mathrm{II}}} \frac{\sinh \frac{\pi g}{2 k}\left(v_{m}-w_{i}-\frac{i}{g}\right)}{\sinh \frac{\pi g}{2 k}\left(v_{m}-w_{i}+\frac{i}{g}\right)}, \\
-1 & =\prod_{i=1}^{K^{\mathrm{II}}} \frac{\sinh \frac{\pi g}{2 k}\left(w_{n}-v_{i}+\frac{i}{g}\right)}{\sinh \frac{\pi g}{2 k}\left(w_{n}-v_{i}-\frac{i}{g}\right)} \prod_{j=1}^{K^{\mathrm{II}}} \frac{\sinh \frac{\pi g}{2 k}\left(w_{n}-w_{j}-\frac{2 i}{g}\right)}{\sinh \frac{\pi g}{2 k}\left(w_{n}-w_{j}+\frac{2 i}{g}\right)}
\end{aligned}
$$

- Thermodynamic limit of mABA: string hypothesis

The mirror Bethe equations

The q-deformed mirror TBA

Stijn J. van
Tongeren

- Recall $\mathrm{S}=S_{0} R \otimes R$
- Mirror ABA:

$$
1=e^{i \bar{p}_{l} R} \prod_{i \neq l}^{K^{\mathrm{I}}} \frac{1}{\sigma^{2}} \frac{x_{i}^{+}-x_{l}^{-}}{x_{i}^{-}-x_{l}^{+}} \frac{1-\frac{1}{x_{i}^{-} x_{l}^{+}}}{1-\frac{1}{x_{i}^{+} x_{l}^{-}}} \prod_{\alpha=1}^{2} \prod_{i=1}^{K_{(\alpha)}^{\mathrm{I}}} \sqrt{q} \frac{y_{i}^{(\alpha)}-x_{l}^{-}}{y_{i}^{(\alpha)}-x_{l}^{+}} \sqrt{\frac{x_{l}^{+}}{x_{l}^{-}}},
$$

with two sets of

$$
\begin{aligned}
1 & =\prod_{i=1}^{K^{\mathrm{I}}} \sqrt{q} \frac{y_{m}-x_{i}^{-}}{y_{m}-x_{i}^{+}} \sqrt{\frac{x_{i}^{+}}{x_{i}^{-}}} \prod_{i=1}^{K^{\mathrm{II}}} \frac{\sinh \frac{\pi g}{2 k}\left(v_{m}-w_{i}-\frac{i}{g}\right)}{\sinh \frac{\pi g}{2 k}\left(v_{m}-w_{i}+\frac{i}{g}\right)}, \\
-1 & =\prod_{i=1}^{K^{\mathrm{II}}} \frac{\sinh \frac{\pi g}{2 k}\left(w_{n}-v_{i}+\frac{i}{g}\right)}{\sinh \frac{\pi g}{2 k}\left(w_{n}-v_{i}-\frac{i}{g}\right)} \prod_{j=1}^{K^{\mathrm{II}}} \frac{\sinh \frac{\pi g}{2 k}\left(w_{n}-w_{j}-\frac{2 i}{g}\right)}{\sinh \frac{\pi g}{2 k}\left(w_{n}-w_{j}+\frac{2 i}{g}\right)}
\end{aligned}
$$

- Thermodynamic limit of mABA: string hypothesis
- Physical bound states of the mirror theory $\left(S_{0}\right)$

The mirror Bethe equations

The q-deformed mirror TBA

- Recall $\mathrm{S}=S_{0} R \otimes R$
- Mirror ABA:

$$
1=e^{i \bar{p}_{l} R} \prod_{i \neq l}^{K^{\mathrm{I}}} \frac{1}{\sigma^{2}} \frac{x_{i}^{+}-x_{l}^{-}}{x_{i}^{-}-x_{l}^{+}} \frac{1-\frac{1}{x_{i}^{-} x_{l}^{+}}}{1-\frac{1}{x_{i}^{+} x_{l}^{-}}} \prod_{\alpha=1}^{2} \prod_{i=1}^{K_{(\alpha)}^{\mathrm{I}}} \sqrt{q} \frac{y_{i}^{(\alpha)}-x_{l}^{-}}{y_{i}^{(\alpha)}-x_{l}^{+}} \sqrt{\frac{x_{l}^{+}}{x_{l}^{-}}},
$$

with two sets of

$$
\begin{aligned}
1 & =\prod_{i=1}^{K^{\mathrm{I}}} \sqrt{q} \frac{y_{m}-x_{i}^{-}}{y_{m}-x_{i}^{+}} \sqrt{\frac{x_{i}^{+}}{x_{i}^{-}}} \prod_{i=1}^{K^{\mathrm{II}}} \frac{\sinh \frac{\pi g}{2 k}\left(v_{m}-w_{i}-\frac{i}{g}\right)}{\sinh \frac{\pi g}{2 k}\left(v_{m}-w_{i}+\frac{i}{g}\right)}, \\
-1 & =\prod_{i=1}^{K^{\mathrm{II}}} \frac{\sinh \frac{\pi g}{2 k}\left(w_{n}-v_{i}+\frac{i}{g}\right)}{\sinh \frac{\pi g}{2 k}\left(w_{n}-v_{i}-\frac{i}{g}\right)} \prod_{j=1}^{K^{\mathrm{II}}} \frac{\sinh \frac{\pi g}{2 k}\left(w_{n}-w_{j}-\frac{2 i}{g}\right)}{\sinh \frac{\pi g}{2 k}\left(w_{n}-w_{j}+\frac{2 i}{g}\right)}
\end{aligned}
$$

- Thermodynamic limit of mABA: string hypothesis
- Physical bound states of the mirror theory $\left(S_{0}\right)$
- String complexes of the auxiliary problem (R)

Bound states

The q-deformed mirror TBA

Stijn J. van
Tongeren

Bound states

- Infinite volume mirror theory: bound states?

Bound states

The q-deformed mirror TBA

Stijn J. van Tongeren

- Infinite volume mirror theory: bound states?

$$
1=e^{i \bar{\nabla}_{l} R} \prod_{i \neq l}^{K^{1}} \frac{1}{\sigma_{l}^{+}} \frac{x_{l}^{+}-x_{i}^{-}}{x_{l}^{-}-x_{i}^{+}} \frac{1-\frac{1}{x_{l}^{-x_{i}^{+}}}}{1-\frac{1}{x_{l}^{+} x_{i}^{-}}}
$$

Bound states

The q-deformed
mirror TBA
Stijn J. van
Tongeren

- Infinite volume mirror theory: bound states?

$$
1=e^{i \tilde{p}_{l} R} \prod_{i \neq l}^{K^{1}} \frac{1}{\sigma^{2}} \frac{x_{l}^{+}-x_{i}^{-}}{x_{l}^{-}-x_{i}^{+}} \frac{1-\frac{1}{x_{l}^{-} x_{i}^{+}}}{1-\frac{1}{x_{l}^{+} x_{i}^{-}}}
$$

- $\operatorname{Im}\left(\tilde{p}_{1}\right)>0$: bound state condition $x_{1}^{-}=x_{2}^{+}$, multiple solutions

Bound states

The q-deformed
mirror TBA
Stijn J. van
Tongeren

- Infinite volume mirror theory: bound states?

$$
1=e^{i \tilde{p}_{l} R} \prod_{i \neq l}^{K^{1}} \frac{1}{\sigma^{2}} \frac{x_{l}^{+}-x_{i}^{-}}{x_{l}^{-}-x_{i}^{+}} \frac{1-\frac{1}{x_{l}^{-} x_{i}^{+}}}{1-\frac{1}{x_{l}^{+} x_{i}^{-}}}
$$

- $\operatorname{Im}\left(\tilde{p}_{1}\right)>0$: bound state condition $x_{1}^{-}=x_{2}^{+}$, multiple solutions
- Unique solution: physical mirror region

Bound states

The q-deformed mirror TBA

Stijn J. van
Tongeren

- Infinite volume mirror theory: bound states?

$$
1=e^{i \tilde{\nabla}_{l} R} \prod_{i \neq l}^{K^{1}} \frac{1}{\sigma_{l}^{+}} \frac{x_{l}^{+}-x_{i}^{-}}{\sigma_{l}^{-}-x_{i}^{+}} \frac{1-\frac{1}{x_{l}^{-x_{i}^{+}}}}{1-\frac{1}{x_{l}^{+} x_{i}^{-}}}
$$

- $\operatorname{Im}\left(\tilde{p}_{1}\right)>0$: bound state condition $x_{1}^{-}=x_{2}^{+}$, multiple solutions
- Unique solution: physical mirror region

Bound states

The q-deformed mirror TBA

Stijn J. van
Tongeren

- Infinite volume mirror theory: bound states?

$$
1=e^{i \tilde{\nabla}_{l} R} \prod_{i \neq l}^{K^{1}} \frac{1}{\sigma_{l}^{+}} \frac{x_{l}^{+}-x_{i}^{-}}{\sigma_{l}^{-}-x_{i}^{+}} \frac{1-\frac{1}{x_{l}^{-x_{i}^{+}}}}{1-\frac{1}{x_{l}^{+} x_{i}^{-}}}
$$

- $\operatorname{Im}\left(\tilde{p}_{1}\right)>0$: bound state condition $x_{1}^{-}=x_{2}^{+}$, multiple solutions
- Unique solution: physical mirror region

Bound states and the u-plane

The q-deformed mirror TBA

Stijn J. van
Tongeren

Bound states and the u-plane

The q-deformed mirror TBA

Stijn J. van
Tongeren

- Nice parametrization of the physical mirror region?

$$
x^{ \pm} \rightarrow x(u \pm i / g)
$$

Bound states and the u-plane

The q-deformed mirror TBA

Stijn J. van
Tongeren

- Nice parametrization of the physical mirror region?

$$
x^{ \pm} \rightarrow x(u \pm i / g)
$$

- $q=1$ mirror region $\longleftrightarrow u$-plane

Bound states and the u-plane

The q-deformed mirror TBA

Stijn J. van
Tongeren

- Nice parametrization of the physical mirror region?

$$
x^{ \pm} \rightarrow x(u \pm i / g)
$$

- $q=1$ mirror region $\longleftrightarrow u$-plane

$$
x(u)=\frac{1}{2}\left(u-i \sqrt{4-u^{2}}\right)
$$

Bound states and the u-plane

The q-deformed mirror TBA

Stijn J. van
Tongeren

- Nice parametrization of the physical mirror region?

$$
x^{ \pm} \rightarrow x(u \pm i / g)
$$

- $q=1$ mirror region $\longleftrightarrow u$-plane

$$
x(u)=\frac{1}{2}\left(u-i \sqrt{4-u^{2}}\right)
$$

- $q=e^{i \pi / k}$ mirror region $\leftarrow u$-plane

Bound states and the u-plane

The q-deformed

- Nice parametrization of the physical mirror region?

$$
x^{ \pm} \rightarrow x(u \pm i / g)
$$

- $q=1$ mirror region $\longleftrightarrow u$-plane

$$
x(u)=\frac{1}{2}\left(u-i \sqrt{4-u^{2}}\right)
$$

- $q=e^{i \pi / k}$ mirror region $\leftarrow u$-plane

$$
x(u)=\frac{e^{\frac{\pi g u}{2 k}}\left(\sinh \frac{\pi g u}{2 k}-i \sqrt{g^{2} \sin ^{2} \frac{\pi}{k}-\sinh ^{2} \frac{g \pi u}{2 k}}\right)-g^{2} \sin ^{2} \frac{\pi}{k}}{g \sin \frac{\pi}{k} \sqrt{1+g^{2} \sin ^{2} \frac{\pi}{k}}}
$$

Bound states and the u－plane

The q－deformed mirror TBA

Stijn J．van Tongeren

The q－deformed model

	$\operatorname{Im} x^{+}>0, \operatorname{Im} x^{-}>0$,
$\operatorname{Im} x^{+}<0, \operatorname{Im} x^{-}<0$,	
	$\operatorname{Im} x^{+}>0, \operatorname{Im} x^{-}<0$,
	Im $x^{+}<0, \operatorname{Im} x^{-}>0$,
	（finimil $\left\|x^{+}\right\|>1,\left\|x^{-}\right\|>1$ ，
	景 $\left\|x^{+}\right\|>1,\left\|x^{-}\right\|<1$ ，
	風 $\left\|x^{+}\right\|<1,\left\|x^{-}\right\|>1$ ，
	㻛 $\left\|x^{+}\right\|<1,\left\|x^{-}\right\|<1$ 。

Bound states on the u-plane

The q-deformed
mirror TBA
Stijn J. van
Tongeren

- Bigger bound states?

Bound states on the u-plane

The q-deformed mirror TBA

Stijn J. van Tongeren

- Bigger bound states? $x_{1}^{-}=x_{2}^{+}, x_{2}^{-}=x_{3}^{+}, \ldots, x_{Q-1}^{-}=x_{Q}^{+}$

Bound states on the u-plane

The q-deformed mirror TBA

Stijn J. van
Tongeren

- Bigger bound states? $x_{1}^{-}=x_{2}^{+}, x_{2}^{-}=x_{3}^{+}, \ldots, x_{Q-1}^{-}=x_{Q}^{+}$
- On the u-plane we get standard Bethe strings

Bound states on the u-plane

- Bigger bound states? $x_{1}^{-}=x_{2}^{+}, x_{2}^{-}=x_{3}^{+}, \ldots, x_{Q-1}^{-}=x_{Q}^{+}$
- On the u-plane we get standard Bethe strings

$$
u_{j}=u+\frac{i}{g}(Q+1-2 j), \quad j=1, \ldots, Q
$$

- Undeformed mirror region $=$ the u-plane: Q arbitrary

Bound states on the u-plane

- Bigger bound states? $x_{1}^{-}=x_{2}^{+}, x_{2}^{-}=x_{3}^{+}, \ldots, x_{Q-1}^{-}=x_{Q}^{+}$
- On the u-plane we get standard Bethe strings

$$
u_{j}=u+\frac{i}{g}(Q+1-2 j), \quad j=1, \ldots, Q
$$

- Undeformed mirror region $=$ the u-plane: Q arbitrary
- Deformed mirror region $=$ strip on the u-plane: $Q \leq k$

Bound states on the u-plane

- Bigger bound states? $x_{1}^{-}=x_{2}^{+}, x_{2}^{-}=x_{3}^{+}, \ldots, x_{Q-1}^{-}=x_{Q}^{+}$
- On the u-plane we get standard Bethe strings

$$
u_{j}=u+\frac{i}{g}(Q+1-2 j), \quad j=1, \ldots, Q
$$

- Undeformed mirror region $=$ the u-plane: Q arbitrary
- Deformed mirror region $=$ strip on the u-plane: $Q \leq k$
- The deformed theory has a finite spectrum of physical excitations

Bound states on the u-plane

- Bigger bound states? $x_{1}^{-}=x_{2}^{+}, x_{2}^{-}=x_{3}^{+}, \ldots, x_{Q-1}^{-}=x_{Q}^{+}$
- On the u-plane we get standard Bethe strings

$$
u_{j}=u+\frac{i}{g}(Q+1-2 j), \quad j=1, \ldots, Q
$$

- Undeformed mirror region $=$ the u-plane: Q arbitrary
- Deformed mirror region $=$ strip on the u-plane: $Q \leq k$
- The deformed theory has a finite spectrum of physical excitations
- What about the auxiliary particles?

Auxiliary spectrum?

The q-deformed mirror TBA

Stijn. J. van
Tongeren

Auxiliary spectrum?

- We would like to understand the spectrum associated to R

Auxiliary spectrum?

The q-deformed mirror TBA

Stijn J. van
Tongeren

- We would like to understand the spectrum associated to R
- R for $\mathfrak{p s u}(2 \mid 2) \rightarrow$ Hubbard

Auxiliary spectrum?

```
The q-deformed
    mirror TBA
- We would like to understand the spectrum associated to \(R\)
- \(R\) for \(\mathfrak{p s u}(2 \mid 2) \rightarrow\) Hubbard
- \(R\) for \(\mathfrak{p s u}_{q}(2 \mid 2) \rightarrow q\)-Hubbard?

\section*{Auxiliary spectrum?}
- We would like to understand the spectrum associated to \(R\)
- \(R\) for \(\mathfrak{p s u}(2 \mid 2) \rightarrow\) Hubbard
- \(R\) for \(\mathfrak{p s u}_{q}(2 \mid 2) \rightarrow q\)-Hubbard?
- "Similar" to the \(q\)-deformation of the XXX spin chain

\section*{TBA for the XXX spin chain}
The \(q\)-deformed
mirror TBA
Stijn J. van
Tongeren
Finite siza
Wascha
q-deformed
spin chain TBA

\section*{TBA for the XXX spin chain}
- String hypothesis: Bethe strings of arbitrary length \(M\)

\section*{TBA for the XXX spin chain}
- String hypothesis: Bethe strings of arbitrary length \(M\)
- \(Y\)-function for each \(M\)-string

\section*{TBA for the XXX spin chain}
- String hypothesis: Bethe strings of arbitrary length \(M\)
- \(Y\)-function for each \(M\)-string
\[
\begin{gathered}
\log Y_{M}=\log \left(1+Y_{M+1}\right)\left(1+Y_{M-1}\right) \star s \\
\left(s(u)=\frac{1}{4 \cosh \pi u / 2}\right)
\end{gathered}
\]

\section*{TBA for the XXX spin chain}
- String hypothesis: Bethe strings of arbitrary length \(M\)
- \(Y\)-function for each \(M\)-string
\[
\begin{aligned}
\log Y_{M}= & \log \left(1+Y_{M+1}\right)\left(1+Y_{M-1}\right) \star s \\
& \left(s(u)=\frac{1}{4 \cosh \pi u / 2}\right)
\end{aligned}
\]


\section*{TBA for the \(q\)-deformed XXX spin chain}
The \(q\)-deformed
mirror TBA
Stijn J. van
Tongeren
Finite siza
Nuscha
q-deformed
spin chain TBA

\section*{TBA for the \(q\)-deformed XXX spin chain}

The \(q\)-deformed mirror TBA

Stijn J. van
Tongeren
- \(q\)-def XXX spin chain is \(\mathrm{XXZ}(\Delta=\cos \pi / k)\)

\section*{TBA for the \(q\)-deformed XXX spin chain}
- \(q\)-def XXX spin chain is \(\mathrm{XXZ}(\Delta=\cos \pi / k)\)
- Different string hypothesis! Especially for \(k \in \mathbb{Z}\)

\section*{TBA for the \(q\)-deformed XXX spin chain}
- \(q\)-def XXX spin chain is \(\mathrm{XXZ}(\Delta=\cos \pi / k)\)
- Different string hypothesis! Especially for \(k \in \mathbb{Z}\)
- Still Bethe strings, but not all \(M\) allowed

\section*{TBA for the \(q\)-deformed XXX spin chain}
- \(q\)-def XXX spin chain is \(\mathrm{XXZ}(\Delta=\cos \pi / k)\)
- Different string hypothesis! Especially for \(k \in \mathbb{Z}\)
- Still Bethe strings, but not all \(M\) allowed
- \(M=1, \ldots, k-1\), with \(u \in \mathbb{R}\) ("positive parity")

\section*{TBA for the \(q\)-deformed XXX spin chain}
- \(q\)-def XXX spin chain is \(\mathrm{XXZ}(\Delta=\cos \pi / k)\)
- Different string hypothesis! Especially for \(k \in \mathbb{Z}\)
- Still Bethe strings, but not all \(M\) allowed
- \(M=1, \ldots, k-1\), with \(u \in \mathbb{R} \quad\) ("positive parity")
- \(M=1\) with \(\operatorname{Im}(u)=i k\) ("negative parity")

\section*{TBA for the XXZ spin chain II}

The \(q\)-deformed mirror TBA
- Negative parity string scatters inversely to a \(k-1\) string

\section*{TBA for the XXZ spin chain II}

The \(q\)-deformed mirror TBA
- Negative parity string scatters inversely to a \(k-1\) string
- Results in special relation: \(\tilde{Y}_{1}=\left(Y_{k-1}\right)^{-1}\)

\section*{TBA for the XXZ spin chain II}
- Negative parity string scatters inversely to a \(k-1\) string
- Results in special relation: \(\tilde{Y}_{1}=\left(Y_{k-1}\right)^{-1}\)


\section*{TBA for the XXZ spin chain II}
- Negative parity string scatters inversely to a \(k-1\) string
- Results in special relation: \(\tilde{Y}_{1}=\left(Y_{k-1}\right)^{-1}\)
\[
\rightarrow\left\{\begin{array}{l}
\log Y_{M}=\log \left(1+Y_{M+1}\right)\left(1+Y_{M-1}\right) \star s \\
\log Y_{k-2}=\log \left(1+Y_{k-3}\right)\left(1+Y_{k-1}\right)^{2} \star s \\
\log Y_{k-1}=\log \left(1+Y_{k-2}\right) \star s
\end{array}\right.
\]

\section*{TBA for other \(q\)-deformed spin chains?}

The \(q\)-deformed mirror TBA
- \(\mathfrak{s u}_{q}(2)\) : Hermitian, nice, elegant, 'simple'

\section*{TBA for other \(q\)-deformed spin chains?}

The \(q\)-deformed mirror TBA

Stijn J. van Tongeren
- \(\mathfrak{s u}_{q}(2)\) : Hermitian, nice, elegant, 'simple'
- \(\mathfrak{s u}_{q}(3)\) : interesting, but complex and rather strange

\section*{TBA for other \(q\)-deformed spin chains?}

The \(q\)-deformed mirror TBA

Stijn. J. van Tongeren
- \(\mathfrak{s u}_{q}(2)\) : Hermitian, nice, elegant, 'simple'
- \(\mathfrak{s u}_{q}(3)\) : interesting, but complex and rather strange


\section*{TBA for other \(q\)-deformed spin chains?}

The \(q\)-deformed mirror TBA

Stijn J. van Tongeren
- \(\mathfrak{s u}_{q}(2)\) : Hermitian, nice, elegant, 'simple'
- \(\mathfrak{s u}_{q}(3)\) : interesting, but complex and rather strange

- \(\mathfrak{s u}_{q}(N): ? ? ?\)

\section*{TBA for other \(q\)-deformed spin chains?}

The \(q\)-deformed mirror TBA

Stijn J. van
Tongeren
- \(\mathfrak{s u}_{q}(2)\) : Hermitian, nice, elegant, 'simple'
- \(\mathfrak{s u}_{q}(3)\) : interesting, but complex and rather strange

- \(\mathfrak{s u}_{q}(N): ? ? ?\)
- \(\mathfrak{s u}_{q}(2 \mid 2)\) : can be nice, elegant, 'simple', real

\section*{Quantum deformed Hubbard TBA}

\author{
The \(q\)-deformed mirror TBA \\ Stijn J. van \\ Tongeren
}
- Our model has \(\mathfrak{p s u}_{q}(2 \mid 2)\) mirror auxiliary Bethe equations

\section*{Quantum deformed Hubbard TBA}

The \(q\)-deformed mirror TBA

Stijn J. van Tongeren
- Our model has \(\mathfrak{p s u}_{q}(2 \mid 2)\) mirror auxiliary Bethe equations
- Come from a pseudo-unitary \(R\)-matrix \(\left(R^{\dagger}=A R^{-1} A^{-1}\right)\)

\section*{Quantum deformed Hubbard TBA}

The \(q\)-deformed
- Our model has \(\mathfrak{p s u}_{q}(2 \mid 2)\) mirror auxiliary Bethe equations
- Come from a pseudo-unitary \(R\)-matrix \(\left(R^{\dagger}=A R^{-1} A^{-1}\right)\)
- Two classes of pseudo-unitary \(\mathrm{QM}\left(H \sim \sum i \partial \log R\right)\)

\section*{Quantum deformed Hubbard TBA}

The \(q\)-deformed
- Our model has \(\mathfrak{p s u}_{q}(2 \mid 2)\) mirror auxiliary Bethe equations
- Come from a pseudo-unitary \(R\)-matrix \(\left(R^{\dagger}=A R^{-1} A^{-1}\right)\)
- Two classes of pseudo-unitary \(\mathrm{QM}\left(H \sim \sum i \partial \log R\right)\)
- Self-conjugate spectrum

\section*{Quantum deformed Hubbard TBA}
- Our model has \(\mathfrak{p s u}_{q}(2 \mid 2)\) mirror auxiliary Bethe equations
- Come from a pseudo-unitary \(R\)-matrix \(\left(R^{\dagger}=A R^{-1} A^{-1}\right)\)
- Two classes of pseudo-unitary QM ( \(H \sim \sum i \partial \log R\) )
- Self-conjugate spectrum
- Real spectrum

\section*{Quantum deformed Hubbard TBA}
- Our model has \(\mathfrak{p s u}_{q}(2 \mid 2)\) mirror auxiliary Bethe equations
- Come from a pseudo-unitary \(R\)-matrix \(\left(R^{\dagger}=A R^{-1} A^{-1}\right)\)
- Two classes of pseudo-unitary \(\mathrm{QM}\left(H \sim \sum i \partial \log R\right)\)
- Self-conjugate spectrum
- Real spectrum (quasi-unitary; \(\exists\) " \(A\) " \(=O O^{\dagger}, H^{\dagger}=O O^{\dagger} H\left(O O^{\dagger}\right)^{-1}\) )

\section*{Quantum deformed Hubbard TBA}

The \(q\)-deformed
- Our model has \(\mathfrak{p s u}_{q}(2 \mid 2)\) mirror auxiliary Bethe equations
- Come from a pseudo-unitary \(R\)-matrix \(\left(R^{\dagger}=A R^{-1} A^{-1}\right)\)
- Two classes of pseudo-unitary QM ( \(H \sim \sum i \partial \log R\) )
- Self-conjugate spectrum
- Real spectrum (quasi-unitary; \(\exists\) " \(A\) " \(=O O^{\dagger}, H^{\dagger}=O O^{\dagger} H\left(O O^{\dagger}\right)^{-1}\) )
- Multi-body \(R\) is really only pseudo-unitary on the string line

\section*{Quantum deformed Hubbard TBA}
- Our model has \(\mathfrak{p s u}_{q}(2 \mid 2)\) mirror auxiliary Bethe equations
- Come from a pseudo-unitary \(R\)-matrix \(\left(R^{\dagger}=A R^{-1} A^{-1}\right)\)
- Two classes of pseudo-unitary \(\mathrm{QM}\left(H \sim \sum i \partial \log R\right)\)
- Self-conjugate spectrum
- Real spectrum (quasi-unitary; \(\exists\) " \(A\) " \(=O O^{\dagger}, H^{\dagger}=O O^{\dagger} H\left(O O^{\dagger}\right)^{-1}\) )
- Multi-body \(R\) is really only pseudo-unitary on the string line
- But multi-body \(R\) appears to be quasi-unitary on the mirror line!

\section*{Quantum deformed Hubbard TBA}
- Our model has \(\mathfrak{p s u}_{q}(2 \mid 2)\) mirror auxiliary Bethe equations
- Come from a pseudo-unitary \(R\)-matrix \(\left(R^{\dagger}=A R^{-1} A^{-1}\right)\)
- Two classes of pseudo-unitary \(\mathrm{QM}\left(H \sim \sum i \partial \log R\right)\)
- Self-conjugate spectrum
- Real spectrum (quasi-unitary; \(\exists\) " \(A\) " \(=O O^{\dagger}, H^{\dagger}=O O^{\dagger} H\left(O O^{\dagger}\right)^{-1}\) )
- Multi-body \(R\) is really only pseudo-unitary on the string line
- But multi-body \(R\) appears to be quasi-unitary on the mirror line!
- Mirror \(\mathfrak{p s u}_{q}(2 \mid 2)\) string complexes and TBA are 'real'

\section*{TBA for mirror \(\mathfrak{s u}_{q}(2 \mid 2)\)}

The \(q\)-deformed mirror TBA
- Mirror \(\mathfrak{p s u}(2 \mid 2):\) Hubbard model

\section*{TBA for mirror \(\mathfrak{s u}_{q}(2 \mid 2)\)}

The \(q\)-deformed mirror TBA Stijn J. van Tongeren
- Mirror \(\mathfrak{p s u}(2 \mid 2):\) Hubbard model ( \(y(v)\) \& \(w\) roots)

\section*{TBA for mirror \(\mathfrak{s u}_{q}(2 \mid 2)\)}

The \(q\)-deformed mirror TBA Stijn J. van Tongeren
- Mirror \(\mathfrak{p s u}(2 \mid 2):\) Hubbard model ( \(y(v) \& w\) roots)
- String hypothesis:

\section*{TBA for mirror \(\mathfrak{s u}_{q}(2 \mid 2)\)}

The \(q\)-deformed mirror TBA

Stijn J, van Tongeren
- Mirror \(\mathfrak{p s u}(2 \mid 2):\) Hubbard model \((y(v) \& w\) roots)
- String hypothesis:
- \(y\)-particles ( \(\pm\) )

\section*{TBA for mirror \(\mathfrak{s u}_{q}(2 \mid 2)\)}

The \(q\)-deformed mirror TBA

Stijn J, van Tongeren
- Mirror \(\mathfrak{p s u}(2 \mid 2):\) Hubbard model ( \(y(v) \& w\) roots)
- String hypothesis:
- \(y\)-particles ( \(\pm\) )
- \(M \mid w\) strings, any \(M(\mathfrak{s u}(2))\)

\section*{TBA for mirror \(\mathfrak{s u}_{q}(2 \mid 2)\)}

The \(q\)-deformed mirror TBA

Stijn J. van
Tongeren
- Mirror \(\mathfrak{p s u}(2 \mid 2):\) Hubbard model ( \(y(v) \& w\) roots)
- String hypothesis:
- y-particles ( \(\pm\) )
- \(M \mid w\) strings, any \(M\) ( \(\mathfrak{s u}(2))\)
- \(M \mid v w\) strings, any \(M(\mathfrak{s u}(2))\)

\section*{TBA for mirror \(\mathfrak{s u}_{q}(2 \mid 2)\)}

The \(q\)-deformed
mirror TBA
Stijn J, van
Tongeren
- Mirror \(\mathfrak{p s u}(2 \mid 2):\) Hubbard model ( \(y(v) \& w\) roots)
- String hypothesis:
- y-particles ( \(\pm\) )
- \(M \mid w\) strings, any \(M(\mathfrak{s u}(2))\)
- \(M \mid v w\) strings, any \(M(\mathfrak{s u}(2))\)


\section*{TBA for mirror \(\mathfrak{s u}_{q}(2 \mid 2)\)}

The \(q\)-deformed mirror TBA
- Mirror \(\mathfrak{p s u}(2 \mid 2):\) Hubbard model ( \(y(v) \& w\) roots)
- String hypothesis:
- \(y\)-particles ( \(\pm\) )
- \(M \mid w\) strings, any \(M\) ( \(\mathfrak{s u}(2))\)
- \(M \mid v w\) strings, any \(M(\mathfrak{s u}(2))\)

- \(q\)-deformed mirror string hypothesis: constrained as XXZ

\section*{TBA for mirror \(\mathfrak{S u}_{q}(2 \mid 2)\)}
- Mirror \(\mathfrak{p s u}(2 \mid 2):\) Hubbard model ( \(y(v) \& w\) roots)
- String hypothesis:
- \(y\)-particles ( \(\pm\) )
- \(M \mid w\) strings, any \(M\) (su(2))
- \(M \mid v w\) strings, any \(M(\mathfrak{s u}(2))\)

- \(q\)-deformed mirror string hypothesis: constrained as XXZ


\section*{Undeformed Mirror TBA}
The \(q\)-deformed
mirror TBA
Stijn J. van
Tongeren

\section*{Undeformed Mirror TBA}

The \(q\)-deformed mirror TBA

Stijn J. van
Tongeren

Two Hubbard subsystems



\section*{Undeformed Mirror TBA}

The \(q\)-deformed
mirror TBA
Stijn J. van
Tongeren

Two Hubbard subsystems coupled via ( \(\infty\) ) \(Q\)-particles


\section*{\(q\)-deformed Mirror TBA}
The \(q\)-deformed
mirror TBA
Stijn J. van
Tongeren

\section*{\(q\)-deformed Mirror TBA}

The \(q\)-deformed mirror TBA

Stijn J. van
Tongeren

\section*{The \(q\)-deformed} \(\mathrm{AdS}_{5} \times \mathrm{S}^{5}\)

Two \(q\)-Hubbard subsystems


\section*{\(q\)-deformed Mirror TBA}

The \(q\)-deformed
mirror TBA
Stijn J. van
Tongeren
Two \(q\)-Hubbard subsystems coupled via \(k Q\)-particles


\section*{\(q\)-deformed Mirror TBA equations}
The \(q\)-deformed
mirror TBA
Stijn J. van
Tongeren

The \(q\)-deformed \(\mathrm{AdS}_{5} \times \mathrm{S}^{5}\) mirror TBA

\section*{\(q\)-deformed Mirror TBA equations}

The \(q\)-deformed mirror TBA
\[
\log Y_{M \mid v w}=\log \left(1+Y_{M+1 \mid v w}\right)\left(1+Y_{M-1 \mid \nu w}\right) \star s-\log \left(1+Y_{M+1}\right) \star s+\delta_{M, 1} \log \left(\frac{1-Y_{-}}{1-Y_{+}}\right) \hat{\star s}
\]
\[
\log Y_{k-2 \mid v w}=\log \left(1+Y_{k-3 \mid v w}\right)\left(1+Y_{k-1 \mid v w}\right)^{2} \star s-\log \left(1+Y_{k-1}\right) \star s,
\]
\[
\log Y_{k-1 \mid v w}=\log \left(1+Y_{k-2 \mid v w}\right) \star s-\log \left(1+Y_{k}\right) \star s,
\]
\[
\log Y_{M \mid w}=\log \left(1+Y_{M+1 \mid w}\right)\left(1+Y_{M-1 \mid w}\right) \star s+\delta_{M, 1} \log \left(\frac{1-Y_{-}^{-1}}{1-Y_{+}^{-1}}\right) \hat{\star s},
\]
\[
\log Y_{k-2 \mid w}=\log \left(1+Y_{k-3 \mid w}\right)\left(1+Y_{k-1 \mid w}\right)^{2} \star s
\]
\[
\log Y_{k-1 \mid w}=\log \left(1+Y_{k-2 \mid w}\right) \star s,
\]
\[
\log Y_{ \pm}=-\log \left(1+Y_{Q}\right) \star K_{ \pm}^{Q y}+\log \frac{1+Y_{M \mid v w}^{-1}}{1+Y_{M \mid w}^{-1}} \star K_{M}+\log \frac{\left(1+Y_{k-1 \mid v w}\right)}{\left(1+Y_{k-1 \mid w}\right)} \star K_{k-1}
\]

The \(q\)-deformed mirror TBA
\[
\log Y_{M \mid v w}=\log \left(1+Y_{M+1 \mid v w}\right)\left(1+Y_{M-1 \mid \nu w}\right) \star s-\log \left(1+Y_{M+1}\right) \star s+\delta_{M, 1} \log \left(\frac{1-Y_{-}}{1-Y_{+}}\right) \hat{\star s}
\]
\[
\log Y_{k-2 \mid v w}=\log \left(1+Y_{k-3 \mid v w}\right)\left(1+Y_{k-1 \mid v w}\right)^{2} \star s-\log \left(1+Y_{k-1}\right) \star s,
\]
\[
\log Y_{k-1 \mid v w}=\log \left(1+Y_{k-2 \mid v w}\right) \star s-\log \left(1+Y_{k}\right) \star s,
\]
\[
\log Y_{M \mid w}=\log \left(1+Y_{M+1 \mid w}\right)\left(1+Y_{M-1 \mid w}\right) \star s+\delta_{M, 1} \log \left(\frac{1-Y_{-}^{-1}}{1-Y_{+}^{-1}}\right) \hat{\star} s
\]
\[
\log Y_{k-2 \mid w}=\log \left(1+Y_{k-3 \mid w}\right)\left(1+Y_{k-1 \mid w}\right)^{2} \star s
\]
\[
\log Y_{k-1 \mid w}=\log \left(1+Y_{k-2 \mid w}\right) \star s,
\]
\[
\log Y_{ \pm}=-\log \left(1+Y_{Q}\right) \star K_{ \pm}^{Q y}+\log \frac{1+Y_{M \mid v w}^{-1}}{1+Y_{M \mid w}^{-1}} \star K_{M}+\log \frac{\left(1+Y_{k-1 \mid v w}\right)}{\left(1+Y_{k-1 \mid w}\right)} \star K_{k-1}
\]
\[
\begin{aligned}
\log Y_{1} & =\log \frac{\left(1-Y_{-}^{-1}\right)^{2}}{1+Y_{2}^{-1}} \star s-\check{\Delta} \check{\star} s, \\
\log Y_{Q} & =\log \frac{Y_{Q+1} Y_{Q-1}}{\left(1+Y_{Q-1}\right)\left(1+Y_{Q+1}\right)} \star s+\log \left(1+Y_{Q-1 \mid \nu w}^{-1}\right)^{2} \star s,
\end{aligned}
\]
\[
\log Y_{k}=2 \log Y_{k-1} \star s-\log \left(1+Y_{k-1}\right) \star s+\log \left(1+Y_{k-1 \mid v w}^{-1}\right)^{4} \star s .
\]

\section*{Crossing and the finite Y-system}

The \(q\)-deformed mirror TBA
- The presented TBA equations are in simplified form; closest to Y-system

\section*{Crossing and the finite Y-system}
- The presented TBA equations are in simplified form; closest to Y-system
- They are derived from so-called canonical equations by applying
\[
(K+1)_{M N}^{-1}=\delta_{M, N}-\left(\delta_{M, N+1}+\delta_{M, N-1}\right) s
\]
relying on identities satisfied by kernels for \(N\) and \(N \pm 1\) bound states

\section*{Crossing and the finite Y-system}
- The presented TBA equations are in simplified form; closest to Y-system
- They are derived from so-called canonical equations by applying
\[
(K+1)_{M N}^{-1}=\delta_{M, N}-\left(\delta_{M, N+1}+\delta_{M, N-1}\right) s
\]
relying on identities satisfied by kernels for \(N\) and \(N \pm 1\) bound states
- We have a boundary, so what about boundary +1 ?

\section*{Crossing and the finite Y-system}
- The presented TBA equations are in simplified form; closest to Y-system
- They are derived from so-called canonical equations by applying
\[
(K+1)_{M N}^{-1}=\delta_{M, N}-\left(\delta_{M, N+1}+\delta_{M, N-1}\right) s
\]
relying on identities satisfied by kernels for \(N\) and \(N \pm 1\) bound states
- We have a boundary, so what about boundary +1 ?
- For XXZ type equations this still works; would-be length \(k\) bound states scatter trivially (add zero)
\[
Y_{k-1 \mid w}^{+} Y_{k-1 \mid w}^{-}=1+Y_{k-2 \mid w}
\]

\section*{Crossing and the finite Y-system}
\[
(K+1)_{M N}^{-1}=\delta_{M, N}-\left(\delta_{M, N+1}+\delta_{M, N-1}\right) s
\]
relying on identities satisfied by kernels for \(N\) and \(N \pm 1\) bound states
- We have a boundary, so what about boundary +1 ?
- For XXZ type equations this still works; would-be length \(k\) bound states scatter trivially (add zero)
\[
Y_{k-1 \mid w}^{+} Y_{k-1 \mid w}^{-}=1+Y_{k-2 \mid w}
\]
- For our momentum carrying particles this is not the case

\section*{Crossing and the finite Y-system II}

The \(q\)-deformed mirror TBA

Stijn J. van Tongeren
- Still, we derived
\[
\log Y_{k}=2 \log Y_{k-1} \star s-\log \left(1+Y_{k-1}\right) \star s+\log \prod_{\alpha=1,2}\left(1+\frac{1}{Y_{k-1 \mid v w}^{(\alpha)}}\right)^{2} \star s
\]

\section*{Crossing and the finite Y-system II}

The \(q\)-deformed mirror TBA

Stijn J. van Tongeren
- Still, we derived
\[
\log Y_{k}=2 \log Y_{k-1} \star s-\log \left(1+Y_{k-1}\right) \star s+\log \prod_{\alpha=1,2}\left(1+\frac{1}{Y_{k-1 \mid v w}^{(\alpha)}}\right)^{2} \star s
\]
- Idea: if we had a length \(k+1\) bound state we would be ok at \(k\)

\section*{Crossing and the finite Y-system II}
- Still, we derived
\[
\log Y_{k}=2 \log Y_{k-1} \star s-\log \left(1+Y_{k-1}\right) \star s+\log \prod_{\alpha=1,2}\left(1+\frac{1}{Y_{k-1 \mid v w}^{(\alpha)}}\right)^{2} \star s
\]
- Idea: if we had a length \(k+1\) bound state we would be ok at \(k\)
- Nice relation between \(k+1\) and \(k-1\) ?
\[
S_{k+1}(u)=S_{k-1}(u) \underbrace{S_{1}(u+i k / g) S_{1}(u-i k / g)}
\]

\section*{Crossing and the finite Y-system II}
- Still, we derived
\[
\log Y_{k}=2 \log Y_{k-1} \star s-\log \left(1+Y_{k-1}\right) \star s+\log \prod_{\alpha=1,2}\left(1+\frac{1}{Y_{k-1 \mid v w}^{(\alpha)}}\right)^{2} \star s
\]
- Idea: if we had a length \(k+1\) bound state we would be ok at \(k\)
- Nice relation between \(k+1\) and \(k-1\) ?
\[
S_{k+1}(u)=S_{k-1}(u) \underbrace{S_{1}(u+i k / g) S_{1}(u-i k / g)}
\]
- For auxiliary kernels the remainder are some known kernels

\section*{Crossing and the finite Y-system II}
- Still, we derived
\[
\log Y_{k}=2 \log Y_{k-1} \star s-\log \left(1+Y_{k-1}\right) \star s+\log \prod_{\alpha=1,2}\left(1+\frac{1}{Y_{k-1 \mid v w}^{(\alpha)}}\right)^{2} \star s
\]
- Idea: if we had a length \(k+1\) bound state we would be ok at \(k\)
- Nice relation between \(k+1\) and \(k-1\) ?
\[
S_{k+1}(u)=S_{k-1}(u) \underbrace{S_{1}(u+i k / g) S_{1}(u-i k / g)}
\]
- For auxiliary kernels the remainder are some known kernels
- For \(S_{0}\), precisely with \(q=e^{i \pi / k}\) we get crossing!

\section*{Crossing and the finite Y-system II}
- Still, we derived
\[
\log Y_{k}=2 \log Y_{k-1} \star s-\log \left(1+Y_{k-1}\right) \star s+\log \prod_{\alpha=1,2}\left(1+\frac{1}{Y_{k-1 \mid v w}^{(\alpha)}}\right)^{2} \star s
\]
- Idea: if we had a length \(k+1\) bound state we would be ok at \(k\)
- Nice relation between \(k+1\) and \(k-1\) ?
\[
S_{k+1}(u)=S_{k-1}(u) \underbrace{S_{1}(u+i k / g) S_{1}(u-i k / g)}
\]
- For auxiliary kernels the remainder are some known kernels
- For \(S_{0}\), precisely with \(q=e^{i \pi / k}\) we get crossing!
- Total remainder is then just the equation for \(Y_{k-1 \mid v w}\); done

\section*{Crossing and the finite Y-system III}
The \(q\)-deformed
mirror TBA
Stijn J. van
Tongeren

Reversing the logic

\section*{Crossing and the finite Y-system III}

Reversing the logic
- Assuming the bound state \(S_{0}\) satisfies discrete Laplace
\[
\frac{S_{M N}^{+} S_{M N}^{-}}{S_{M N+1} S_{M N-1}}=1
\]

\section*{Crossing and the finite Y-system III}

Reversing the logic
- Assuming the bound state \(S_{0}\) satisfies discrete Laplace
\[
\frac{S_{M N}^{+} S_{M N}^{-}}{S_{M N+1} S_{M N-1}}=1
\]
- and the existence of a Y-system

\section*{Crossing and the finite Y-system III}

Reversing the logic
- Assuming the bound state \(S_{0}\) satisfies discrete Laplace
\[
\frac{S_{M N}^{+} S_{M N}^{-}}{S_{M N+1} S_{M N-1}}=1
\]
- and the existence of a Y-system
we can 'derive’ the crossing equation!

The \(q\)-deformed mirror TBA

Stijn J. van
Tongeren

\section*{Summary}
- TBA in finite size AdS/CFT

\section*{Summary}
- TBA in finite size AdS/CFT
- \(q\)-deformed mirror model: spectrum bounded

\section*{Summary}
- TBA in finite size AdS/CFT
- \(q\)-deformed mirror model: spectrum bounded
- \(q\)-deformed auxiliary TBA

\section*{Summary}
- TBA in finite size AdS/CFT
- \(q\)-deformed mirror model: spectrum bounded
- \(q\)-deformed auxiliary TBA
- XXX to XXZ: interesting TBA structure

\section*{Summary}
- TBA in finite size AdS/CFT
- \(q\)-deformed mirror model: spectrum bounded
- \(q\)-deformed auxiliary TBA
- XXX to XXZ: interesting TBA structure
- \(q\)-Hubbard: analogous new nice TBA structure

\section*{Summary}
- TBA in finite size AdS/CFT
- \(q\)-deformed mirror model: spectrum bounded
- \(q\)-deformed auxiliary TBA
- XXX to XXZ: interesting TBA structure
- \(q\)-Hubbard: analogous new nice TBA structure
- Possible due to 'reality' of the mirror \(q\)-Hubbard model

\section*{Summary}
- TBA in finite size AdS/CFT
- \(q\)-deformed mirror model: spectrum bounded
- \(q\)-deformed auxiliary TBA
- XXX to XXZ: interesting TBA structure
- \(q\)-Hubbard: analogous new nice TBA structure
- Possible due to 'reality' of the mirror \(q\)-Hubbard model
- \(q\)-deformed mirror TBA and Y-system

\section*{Summary}
- TBA in finite size AdS/CFT
- \(q\)-deformed mirror model: spectrum bounded
- \(q\)-deformed auxiliary TBA
- XXX to XXZ: interesting TBA structure
- \(q\)-Hubbard: analogous new nice TBA structure
- Possible due to 'reality' of the mirror \(q\)-Hubbard model
- \(q\)-deformed mirror TBA and Y-system
- Closure relies essentially on crossing

\section*{Outlook}
- Excited states via asymptotic solution (coming soon)

\section*{Outlook}
- Excited states via asymptotic solution (coming soon)
- Special relations between \(T\)-functions

\section*{Outlook}
- Excited states via asymptotic solution (coming soon)
- Special relations between \(T\)-functions
- Further insight into the \(\mathrm{AdS}_{5} \times \mathrm{S}^{5}\) mirror model

\section*{Outlook}
- Excited states via asymptotic solution (coming soon)
- Special relations between \(T\)-functions
- Further insight into the \(\mathrm{AdS}_{5} \times \mathrm{S}^{5}\) mirror model
- 'Regularization' of the \(\mathrm{AdS}_{5} \times \mathrm{S}^{5}\) mirror TBA

\section*{Outlook}
- Excited states via asymptotic solution (coming soon)
- Special relations between \(T\)-functions
- Further insight into the \(\mathrm{AdS}_{5} \times \mathrm{S}^{5}\) mirror model
- 'Regularization' of the \(\mathrm{AdS}_{5} \times \mathrm{S}^{5}\) mirror TBA
- Deformation with \(q\) real

\section*{Outlook}
- Excited states via asymptotic solution (coming soon)
- Special relations between \(T\)-functions
- Further insight into the \(\mathrm{AdS}_{5} \times \mathrm{S}^{5}\) mirror model
- 'Regularization' of the \(\mathrm{AdS}_{5} \times \mathrm{S}^{5}\) mirror TBA
- Deformation with \(q\) real
- (TBA for) \(q\)-Hubbard proper (Alcaraz-Bariev)

The \(q\)-deformed mirror TBA

Stijn J. van
Tongeren
```

