nie *q*-deformed mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

The quantum deformed mirror TBA

Stijn J. van Tongeren

nie *q*-deformed mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

The quantum deformed mirror TBA

Stijn J. van Tongeren

Work done in collaboration with G. Arutyunov and M. de Leeuw, [1208.3478]

Introduction

Arutyunov, Frolov '09 Gromov, Kazakov, Vieira '09 Bombardelli, Fioravanti, Tateo '09 Gromov, Kazakov, Kozak, Vieira '09

Conclusion

Introduction

The *q*-deformed mirror TBA

Tongeren

Finite size AdS/CFT

The *q*-deforme model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

• Interesting model

The *q*-deformed mirror TBA

Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

• Interesting model

► Integrability: trigonometric rather than rational

The *q*-deformed mirror TBA

Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

- Interesting model
 - ► Integrability: trigonometric rather than rational
 - ► TBA: interesting structure (XXZ)

The *q*-deformed mirror TBA

Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

• Interesting model

- Integrability: trigonometric rather than rational
- ► TBA: interesting structure (XXZ)
- ► (Thermodynamics of) the *q*-deformed Hubbard model

The *q*-deformed mirror TBA

Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deforn model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

Conclusion

- Interesting model
 - ► Integrability: trigonometric rather than rational
 - ► TBA: interesting structure (XXZ)
 - ► (Thermodynamics of) the *q*-deformed Hubbard model

Alcaraz and Bariev '99

• Conjuctured relation to Pohlmeyer reduced string theory

The *q*-deformed mirror TBA

Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deforn model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

Conclusion

- Interesting model
 - Integrability: trigonometric rather than rational
 - ► TBA: interesting structure (XXZ)
 - ► (Thermodynamics of) the *q*-deformed Hubbard model

- Conjuctured relation to Pohlmeyer reduced string theory
 - q-deformed theory interpolates

The *q*-deformed mirror TBA

Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deforn model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

Conclusion

- Interesting model
 - Integrability: trigonometric rather than rational
 - ► TBA: interesting structure (XXZ)
 - ► (Thermodynamics of) the *q*-deformed Hubbard model

- Conjuctured relation to Pohlmeyer reduced string theory
 - q-deformed theory interpolates
 - q = 1, g arbitrary: AdS₅ × S⁵ string theory

The *q*-deformed mirror TBA

Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deforn model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

Conclusion

- Interesting model
 - Integrability: trigonometric rather than rational
 - ► TBA: interesting structure (XXZ)
 - ► (Thermodynamics of) the *q*-deformed Hubbard model

Alcaraz and Bariev '99

- Conjuctured relation to Pohlmeyer reduced string theory
 - q-deformed theory interpolates
 - q = 1, g arbitrary: AdS₅ × S⁵ string theory
 - $q = e^{i\pi/k}, g \to \infty$: solitons of ssssG

Hoare and Tseytlin '11 Hoare, Hollowood and Miramontes '11

The *q*-deformed mirror TBA

Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deforn model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

Conclusion

- Interesting model
 - Integrability: trigonometric rather than rational
 - ► TBA: interesting structure (XXZ)
 - ► (Thermodynamics of) the *q*-deformed Hubbard model

- Conjuctured relation to Pohlmeyer reduced string theory
 - q-deformed theory interpolates
 - q = 1, g arbitrary: AdS₅ × S⁵ string theory
 - ► $q = e^{i\pi/k}, g \to \infty$: solitons of ssssG Hoare and Tseytlin '11 Hoare, Hollowood and Miramontes '11
- Complementary approach to $AdS_5 \times S^5$ mirror TBA

The *q*-deformed mirror TBA

Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deforn model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

Conclusion

- Interesting model
 - Integrability: trigonometric rather than rational
 - ► TBA: interesting structure (XXZ)
 - ► (Thermodynamics of) the *q*-deformed Hubbard model

- Conjuctured relation to Pohlmeyer reduced string theory
 - q-deformed theory interpolates
 - q = 1, g arbitrary: AdS₅ × S⁵ string theory
 - ► $q = e^{i\pi/k}, g \to \infty$: solitons of ssssG Hoare and Tseytlin '11 Hoare, Hollowood and Miramontes '11
- Complementary approach to $AdS_5\times S^5$ mirror TBA
 - Physical 'regularization' of the problem $(q = e^{i\pi/k})$

The *q*-deformed mirror TBA

Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deforn model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

Conclusion

- Interesting model
 - Integrability: trigonometric rather than rational
 - ► TBA: interesting structure (XXZ)
 - ► (Thermodynamics of) the *q*-deformed Hubbard model

- Conjuctured relation to Pohlmeyer reduced string theory
 - q-deformed theory interpolates
 - q = 1, g arbitrary: AdS₅ × S⁵ string theory
 - $q = e^{i\pi/k}, g \to \infty$: solitons of ssssG Hoare, Hollowood and Miramontes '11 Hoare, Hollowood and Miramontes '11
- Complementary approach to $AdS_5\times S^5$ mirror TBA
 - Physical 'regularization' of the problem $(q = e^{i\pi/k})$
 - Wider perspective

The *q*-deformed mirror TBA

Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deforn model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

Conclusion

- Interesting model
 - Integrability: trigonometric rather than rational
 - ► TBA: interesting structure (XXZ)
 - ► (Thermodynamics of) the *q*-deformed Hubbard model

- Conjuctured relation to Pohlmeyer reduced string theory
 - q-deformed theory interpolates
 - q = 1, g arbitrary: AdS₅ × S⁵ string theory
 - ► $q = e^{i\pi/k}, g \to \infty$: solitons of ssssG Hoare and Tseytlin '11 Hoare, Hollowood and Miramontes '11
- Complementary approach to $AdS_5\times S^5$ mirror TBA
 - Physical 'regularization' of the problem $(q = e^{i\pi/k})$
 - Wider perspective
- Possible (partial) applications to particular deformed backgrounds

The *q*-deformed mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The q-deform model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

Finite size AdS/CFT

The q-deformed model and its bound states

q-deformed spin chain TBA

The q-deformed $AdS_5 \times S^5$ mirror TBA

Concluding remarks

The *q*-deformed mirror TBA

Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

• TBA describes finite size string spectrum via a mirror model

Zamolodchikov '89 Ambjorn, Janik and Kristjansen '05 Arutyunov and Frolov '07

The *q*-deformed mirror TBA

Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

• TBA describes finite size string spectrum via a mirror model

Zamolodchikov '89 Ambjorn, Janik and Kristjansen '05 Arutyunov and Frolov '07

• Based on mirror Bethe equations from $\mathfrak{psu}(2|2)^2$ invariant *S*-matrix

Beisert '05

mirror TBA

Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

Conclusion

• TBA describes finite size string spectrum via a mirror model

Zamolodchikov '89 Ambjorn, Janik and Kristjansen '05 Arutyunov and Frolov '07

- Based on mirror Bethe equations from $psu(2|2)^2$ invariant S-matrix Beisert '05
- Spectrum of excitations in TDL: string hypothesis

mirror TBA

Tongeren

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

Conclusion

• TBA describes finite size string spectrum via a mirror model

Zamolodchikov '89 Ambjorn, Janik and Kristjansen '05 Arutyunov and Frolov '07

- Based on mirror Bethe equations from $\mathfrak{psu}(2|2)^2$ invariant S-matrix Beisert '05
- Spectrum of excitations in TDL: string hypothesis

Arutyunov and Frolov '09

• Today: the quantum deformation of this story (at roots of unity)

mirror TBA Stiin J. van

Tongeren

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

Conclusion

• TBA describes finite size string spectrum via a mirror model

Zamolodchikov '89 Ambjorn, Janik and Kristjansen '05 Arutyunov and Frolov '07

- Based on mirror Bethe equations from $psu(2|2)^2$ invariant S-matrix Beisert '05
- Spectrum of excitations in TDL: string hypothesis

- Today: the quantum deformation of this story (at roots of unity)
 - q-deformed $psu(2|2)_{c.e.}^2$ symmetry

mirror TBA Stiin J. van

Tongeren

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

Conclusion

• TBA describes finite size string spectrum via a mirror model

Zamolodchikov '89 Ambjorn, Janik and Kristjansen '05 Arutyunov and Frolov '07

- Based on mirror Bethe equations from $\mathfrak{psu}(2|2)^2$ invariant S-matrix Beisert '05
- Spectrum of excitations in TDL: string hypothesis

- Today: the quantum deformation of this story (at roots of unity)
 - q-deformed $\mathfrak{psu}(2|2)^2_{c.e.}$ symmetry
 - $\mathfrak{psu}_q(2|2)^2$ invariant S-matrix

mirror TBA Stijn J. van

Tongeren

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

Conclusion

• TBA describes finite size string spectrum via a mirror model

Zamolodchikov '89 Ambjorn, Janik and Kristjansen '05 Arutyunov and Frolov '07

- Based on mirror Bethe equations from $\mathfrak{psu}(2|2)^2$ invariant S-matrix Beisert '05
- Spectrum of excitations in TDL: string hypothesis

- Today: the quantum deformation of this story (at roots of unity)
 - q-deformed $\mathfrak{psu}(2|2)^2_{c.e.}$ symmetry
 - $\mathfrak{psu}_q(2|2)^2$ invariant S-matrix
 - Deformed model

mirror TBA Stiin J. van

Toligeren

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

Conclusion

• TBA describes finite size string spectrum via a mirror model

Zamolodchikov '89 Ambjorn, Janik and Kristjansen '05 Arutyunov and Frolov '07

- Based on mirror Bethe equations from $psu(2|2)^2$ invariant S-matrix Beisert '05
- Spectrum of excitations in TDL: string hypothesis

- Today: the quantum deformation of this story (at roots of unity)
 - q-deformed $psu(2|2)^2_{c.e.}$ symmetry
 - $\mathfrak{psu}_q(2|2)^2$ invariant S-matrix
 - Deformed model
 - ► Thermodynamic limit: different string hypothesis

mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

Conclusion

• The $\mathfrak{su}(2|2)$ superalgebra in Chevalley-Serre basis $(3 \times E, F, H)$ $[H_i, H_j] = 0, \ [H_i, E/F_j] = \pm A_{ij}E/F_j, \ [E_i, F_j] = \delta_{ij}D_iH_i,$

with

$$A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & -2 \end{pmatrix}, D = \operatorname{diag}(1, -1, -1)$$

plus Serre relations

mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

Conclusion

• The $\mathfrak{su}(2|2)$ superalgebra in Chevalley-Serre basis $(3 \times E, F, H)$ $[H_i, H_j] = 0, \ [H_i, E/F_j] = \pm A_{ij}E/F_j, \ [E_i, F_j] = \delta_{ij}D_iH_i,$

with

$$A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & -2 \end{pmatrix}, D = \operatorname{diag}(1, -1, -1)$$

plus Serre relations

• $U(\mathfrak{su}(2|2))$ can be deformed to $U_q(\mathfrak{su}(2|2))$

mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

Conclusion

• The $\mathfrak{su}(2|2)$ superalgebra in Chevalley-Serre basis $(3 \times E, F, H)$ $[H_i, H_i] = 0, \ [H_i, E/F_i] = \pm A_{ii}E/F_i, \ [E_i, F_i] = \delta_{ii}D_iH_i,$

with

$$A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & -2 \end{pmatrix}, D = \operatorname{diag}(1, -1, -1)$$

plus Serre relations

• $U(\mathfrak{su}(2|2))$ can be deformed to $U_q(\mathfrak{su}(2|2))$ $[E_i, F_j] = \delta_{ij} D_i H_i \rightarrow \delta_{ij} D_i [H_i]_q, \text{ where } [x]_q \equiv \frac{q^x - q^{-x}}{q - q^{-1}}$

mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

Conclusion

• The $\mathfrak{su}(2|2)$ superalgebra in Chevalley-Serre basis $(3 \times E, F, H)$ $[H_i, H_j] = 0, \ [H_i, E/F_j] = \pm A_{ij}E/F_j, \ [E_i, F_j] = \delta_{ij}D_iH_i,$

with

$$A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & -2 \end{pmatrix}, D = \operatorname{diag}(1, -1, -1)$$

plus Serre relations

• $U(\mathfrak{su}(2|2))$ can be deformed to $U_q(\mathfrak{su}(2|2))$ $[E_i, F_j] = \delta_{ij} D_i H_i \rightarrow \delta_{ij} D_i [H_i]_q, \text{ where } [x]_q \equiv \frac{q^x - q^{-x}}{q - q^{-1}}$

plus (deformed) Serre relations

mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

Conclusion

• The $\mathfrak{su}(2|2)$ superalgebra in Chevalley-Serre basis $(3 \times E, F, H)$ $[H_i, H_j] = 0, \ [H_i, E/F_j] = \pm A_{ij}E/F_j, \ [E_i, F_j] = \delta_{ij}D_iH_i,$

with

$$A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & -2 \end{pmatrix}, D = \operatorname{diag}(1, -1, -1)$$

plus Serre relations

• $U(\mathfrak{su}(2|2))$ can be deformed to $U_q(\mathfrak{su}(2|2))$

$$[E_i, F_j] = \delta_{ij} D_i H_i \to \delta_{ij} D_i [H_i]_q, \text{ where } [x]_q \equiv \frac{q^x - q^{-x}}{q - q^{-1}}$$

plus (deformed) Serre relations

• We take $q = e^{i\pi/k}$ with integer k > 2

mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

• q-deformation extends to $\mathfrak{psu}(2|2) \ltimes \mathbb{R}^3$

• $\mathfrak{psu}_q(2|2)$ invariant *R*-matrix

Beisert and Koroteev '08 Beisert, Galleas and Matsumoto '11

nirror TBA Stijn J. van

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

• q-deformation extends to $\mathfrak{psu}(2|2) \ltimes \mathbb{R}^3$

- $\mathfrak{psu}_q(2|2)$ invariant *R*-matrix
- $\blacktriangleright S = S_0 R \otimes R$

Beisert and Koroteev '08 Beisert, Galleas and Matsumoto '11

nirror TBA Stijn J. van

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

• q-deformation extends to $\mathfrak{psu}(2|2) \ltimes \mathbb{R}^3$

- ▶ $\mathfrak{psu}_q(2|2)$ invariant *R*-matrix
- $\triangleright S = S_0 R \otimes R$
- S_0 can be found such that S satisfies crossing
- $\mathfrak{psu}_q(2|2)^2$ invariant S-matrix

Hoare, Hollowood and Miramontes '11/12

Beisert and Koroteev '08 Beisert, Galleas and Matsumoto '11

mirror TBA Stijn J. van

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

Conclusion

- q-deformation extends to $\mathfrak{psu}(2|2) \ltimes \mathbb{R}^3$
 - ▶ $\mathfrak{psu}_q(2|2)$ invariant *R*-matrix
 - $\triangleright S = S_0 R \otimes R$
 - S_0 can be found such that S satisfies crossing
 - ▶ $\mathfrak{psu}_q(2|2)^2$ invariant S-matrix

Hoare, Hollowood and Miramontes '11/12

Beisert and Koroteev '08 Beisert, Galleas and Matsumoto '11

• *S*-matrix is physically *pseudo*-unitary ($S^{\dagger} = B S^{-1} B^{-1}$, *B* Herm.)

mirror TBA Stijn J. van

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

Conclusion

- q-deformation extends to $\mathfrak{psu}(2|2) \ltimes \mathbb{R}^3$
 - ▶ $\mathfrak{psu}_q(2|2)$ invariant *R*-matrix
 - $\triangleright S = S_0 R \otimes R$
 - S_0 can be found such that S satisfies crossing
 - ▶ $\mathfrak{psu}_q(2|2)^2$ invariant S-matrix

Hoare, Hollowood and Miramontes '11/12

- *S*-matrix is physically *pseudo*-unitary ($S^{\dagger} = B S^{-1} B^{-1}$, *B* Herm.)
- Kinematics of the model? How are excitations described?

mirror TBA Stijn J. van

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

Conclusion

- q-deformation extends to $\mathfrak{psu}(2|2) \ltimes \mathbb{R}^3$
 - ▶ $\mathfrak{psu}_q(2|2)$ invariant *R*-matrix
 - $\triangleright S = S_0 R \otimes R$
 - S_0 can be found such that S satisfies crossing
 - ▶ $\mathfrak{psu}_q(2|2)^2$ invariant S-matrix

Hoare, Hollowood and Miramontes '11/12

- *S*-matrix is physically *pseudo*-unitary ($S^{\dagger} = B S^{-1} B^{-1}$, *B* Herm.)
- Kinematics of the model? How are excitations described?
 - ► Short representations labeled by central charges U and V (= q^C) satisfying shortening condition

mirror TBA Stijn J. van

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

Conclusion

- q-deformation extends to $\mathfrak{psu}(2|2) \ltimes \mathbb{R}^3$
 - ▶ $\mathfrak{psu}_q(2|2)$ invariant *R*-matrix
 - $\triangleright S = S_0 R \otimes R$
 - S_0 can be found such that S satisfies crossing
 - ▶ $\mathfrak{psu}_q(2|2)^2$ invariant S-matrix

Hoare, Hollowood and Miramontes '11/12

- *S*-matrix is physically *pseudo*-unitary ($S^{\dagger} = B S^{-1} B^{-1}$, *B* Herm.)
- Kinematics of the model? How are excitations described?
 - ► Short representations labeled by central charges U and V (= q^C) satisfying shortening condition
 - Parametrized by deformed x^{\pm} variables

mirror TBA Stijn J. van

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

Conclusion

- q-deformation extends to $\mathfrak{psu}(2|2) \ltimes \mathbb{R}^3$
 - ▶ $\mathfrak{psu}_q(2|2)$ invariant *R*-matrix
 - $\triangleright S = S_0 R \otimes R$
 - S_0 can be found such that S satisfies crossing
 - ▶ $\mathfrak{psu}_q(2|2)^2$ invariant S-matrix

Hoare, Hollowood and Miramontes '11/12

- *S*-matrix is physically *pseudo*-unitary ($S^{\dagger} = B S^{-1} B^{-1}$, *B* Herm.)
- Kinematics of the model? How are excitations described?
 - ► Short representations labeled by central charges U and V (= q^C) satisfying shortening condition
 - Parametrized by deformed x^{\pm} variables
 - ▶ Natural *definition* of *E* and *p* in terms of *U* and *V*

Parametrizing the fundamental representation

mirror TBA Stijn J. van

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

• Central charges in terms of x^{\pm}

$$U^{2} = \frac{1}{q} \frac{x^{+} + \xi}{x^{-} + \xi}, \quad V^{2} = q \frac{x^{+}}{x^{-}} \frac{x^{-} + \xi}{x^{+} + \xi}$$

Parametrizing the fundamental representation

nie *q*-deformed mirror TBA Stijn J. van

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

Conclusion

• Central charges in terms of x^{\pm}

$$U^{2} = \frac{1}{q} \frac{x^{+} + \xi}{x^{-} + \xi}, \quad V^{2} = q \frac{x^{+}}{x^{-}} \frac{x^{-} + \xi}{x^{+} + \xi}$$

• Then the shortening condition is (equivalent to)

$$\frac{1}{q}\left(x^{+}+\frac{1}{x^{+}}\right)-q\left(x^{-}+\frac{1}{x^{-}}\right)=\left(q-\frac{1}{q}\right)\left(\xi+\frac{1}{\xi}\right)$$

with

$$\xi = -\frac{i}{2} \frac{g(q-q^{-1})}{\sqrt{1 - \frac{g^2}{4}(q-q^{-1})^2}}$$

The *q*-deformed mirror TBA

Tongeren

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

• To connect smoothly with string theory (q = 1) we define:

$$V^2 \equiv q^H \,, \ \ U^2 \equiv e^{ip}$$

mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

• To connect smoothly with string theory (q = 1) we define:

$$V^2 \equiv q^H, \ U^2 \equiv e^{ip}$$

• Then shortening = deformed string dispersion

mirror TBA Stijn J. van

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

• To connect smoothly with string theory (q = 1) we define:

$$V^2 \equiv q^H, \ U^2 \equiv e^{ip}$$

- Then shortening = deformed string dispersion
- $H \to i\tilde{p}, p \to i\tilde{H}$: mirror dispersion ($q = e^{i\pi/k}$)

mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The q-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

• To connect smoothly with string theory (q = 1) we define:

$$V^2 \equiv q^H, \ U^2 \equiv e^{ip}$$

• Then shortening = deformed string dispersion

•
$$H \to i\tilde{p}, p \to i\tilde{H}$$
: mirror dispersion $(q = e^{i\pi/k})$

$$\tilde{H} = 2 \operatorname{arcsinh}\left(\frac{1}{g} \frac{\sin \frac{\pi}{2k}}{\sin \frac{\pi}{k}} \sqrt{1 + \left(1 + g^2 \sin^2 \frac{\pi}{k}\right) \frac{\sinh^2 \frac{\pi}{2k}\tilde{p}}{\sin^2 \frac{\pi}{2k}}}\right)$$

mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

Conclusion

• To connect smoothly with string theory (q = 1) we define:

$$V^2 \equiv q^H, \ U^2 \equiv e^{ip}$$

• Then shortening = deformed string dispersion

•
$$H \to i\tilde{p}, p \to i\tilde{H}$$
: mirror dispersion $(q = e^{i\pi/k})$

$$\tilde{H} = 2 \operatorname{arcsinh}\left(\frac{1}{g} \frac{\sin \frac{\pi}{2k}}{\sin \frac{\pi}{k}} \sqrt{1 + \left(1 + g^2 \sin^2 \frac{\pi}{k}\right) \frac{\sinh^2 \frac{\pi}{2k} \tilde{p}}{\sin^2 \frac{\pi}{2k}}}\right)$$

• ssssG connection: rescale $\tilde{H} \to \frac{\tilde{H}}{g}$ and $\tilde{p} \to \frac{k}{\pi} \frac{\tilde{p}}{g}$, limit $g \to \infty$

mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

Conclusion

• To connect smoothly with string theory (q = 1) we define:

$$V^2 \equiv q^H, \ U^2 \equiv e^{ip}$$

• Then shortening = deformed string dispersion

•
$$H \to i\tilde{p}, p \to i\tilde{H}$$
: mirror dispersion $(q = e^{i\pi/k})$

$$\tilde{H} = 2 \operatorname{arcsinh}\left(\frac{1}{g} \frac{\sin \frac{\pi}{2k}}{\sin \frac{\pi}{k}} \sqrt{1 + \left(1 + g^2 \sin^2 \frac{\pi}{k}\right) \frac{\sinh^2 \frac{\pi}{2k} \tilde{p}}{\sin^2 \frac{\pi}{2k}}}\right)$$

• ssssG connection: rescale $\tilde{H} \to \frac{\tilde{H}}{g}$ and $\tilde{p} \to \frac{k}{\pi} \frac{\tilde{p}}{g}$, limit $g \to \infty$

$$\tilde{H}^2 - \tilde{p}^2 = \cos^{-2} \frac{\pi}{2k}$$

mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

Conclusion

• To connect smoothly with string theory (q = 1) we define:

$$V^2 \equiv q^H, \ U^2 \equiv e^{ip}$$

• Then shortening = deformed string dispersion

•
$$H \to i\tilde{p}, p \to i\tilde{H}$$
: mirror dispersion $(q = e^{i\pi/k})$

$$\tilde{H} = 2 \operatorname{arcsinh}\left(\frac{1}{g} \frac{\sin \frac{\pi}{2k}}{\sin \frac{\pi}{k}} \sqrt{1 + \left(1 + g^2 \sin^2 \frac{\pi}{k}\right) \frac{\sinh^2 \frac{\pi}{2k} \tilde{p}}{\sin^2 \frac{\pi}{2k}}}\right)$$

• ssssG connection: rescale $\tilde{H} \to \frac{\tilde{H}}{g}$ and $\tilde{p} \to \frac{k}{\pi} \frac{\tilde{p}}{g}$, limit $g \to \infty$ $\tilde{H}^2 - \tilde{p}^2 = \cos^{-2} \frac{\pi}{2k}$

• As for q = 1, this can be uniformized on a torus

mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

Conclusion

• To connect smoothly with string theory (q = 1) we define:

$$V^2 \equiv q^H, \ U^2 \equiv e^{ip}$$

• Then shortening = deformed string dispersion

•
$$H \to i\tilde{p}, p \to i\tilde{H}$$
: mirror dispersion $(q = e^{i\pi/k})$

$$\tilde{H} = 2 \operatorname{arcsinh}\left(\frac{1}{g} \frac{\sin \frac{\pi}{2k}}{\sin \frac{\pi}{k}} \sqrt{1 + \left(1 + g^2 \sin^2 \frac{\pi}{k}\right) \frac{\sinh^2 \frac{\pi}{2k} \tilde{p}}{\sin^2 \frac{\pi}{2k}}}\right)$$

• ssssG connection: rescale $\tilde{H} \to \frac{\tilde{H}}{g}$ and $\tilde{p} \to \frac{k}{\pi} \frac{\tilde{p}}{g}$, limit $g \to \infty$ $\tilde{H}^2 - \tilde{p}^2 = \cos^{-2} \frac{\pi}{2k}$

• As for q = 1, this can be uniformized on a torus ("torus = space of short reps")

The dispersion relation on the torus

The dispersion relation on the torus

The dispersion relation on the torus

The *q*-deformed mirror TBA

Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

• Recall $S = S_0 R \otimes R$

The *q*-deformed mirror TBA Stijn J. van

Tongeren

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

- Recall $S = S_0 R \otimes R$
- Mirror ABA:

$$1 = e^{i\tilde{p}_l R} \prod_{i \neq l}^{K^{\rm I}} \frac{1}{\sigma^2} \frac{x_i^+ - x_l^-}{x_i^- - x_l^+} \frac{1 - \frac{1}{x_i^- x_l^+}}{1 - \frac{1}{x_i^+ x_i^-}} \prod_{\alpha=1}^2 \prod_{i=1}^{K^{\rm I}(\alpha)} \sqrt{q} \frac{y_i^{(\alpha)} - x_l^-}{y_i^{(\alpha)} - x_l^+} \sqrt{\frac{x_l^+}{x_l^-}},$$

The *q*-deformed mirror TBA Stijn J. van

Tongeren

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

Conclusion

- Recall $S = S_0 R \otimes R$
- Mirror ABA:

$$1 = e^{i\tilde{p}_l R} \prod_{i \neq l}^{K^{\rm I}} \frac{1}{\sigma^2} \frac{x_i^+ - x_l^-}{x_i^- - x_l^+} \frac{1 - \frac{1}{x_i^- x_l^+}}{1 - \frac{1}{x_i^+ x_l^-}} \prod_{\alpha=1}^2 \prod_{i=1}^{K^{\rm I}_{(\alpha)}} \sqrt{q} \frac{y_i^{(\alpha)} - x_l^-}{y_i^{(\alpha)} - x_l^+} \sqrt{\frac{x_l^+}{x_l^-}},$$

with two sets of

$$1 = \prod_{i=1}^{K^{\mathrm{I}}} \sqrt{q} \frac{y_m - x_i^-}{y_m - x_i^+} \sqrt{\frac{x_i^+}{x_i^-}} \prod_{i=1}^{K^{\mathrm{III}}} \frac{\sinh \frac{\pi g}{2k} \left(v_m - w_i - \frac{i}{g}\right)}{\sinh \frac{\pi g}{2k} \left(w_n - w_i + \frac{i}{g}\right)},$$

$$-1 = \prod_{i=1}^{K^{\mathrm{II}}} \frac{\sinh \frac{\pi g}{2k} \left(w_n - v_i + \frac{i}{g}\right)}{\sinh \frac{\pi g}{2k} \left(w_n - v_i - \frac{i}{g}\right)} \prod_{j=1}^{K^{\mathrm{III}}} \frac{\sinh \frac{\pi g}{2k} \left(w_n - w_j - \frac{2i}{g}\right)}{\sinh \frac{\pi g}{2k} \left(w_n - w_j - \frac{2i}{g}\right)},$$

The *q*-deformed mirror TBA Stijn J. van

Finite size

The *q*-deformed model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

Conclusion

- Recall $S = S_0 R \otimes R$
- Mirror ABA:

$$1 = e^{i\tilde{p}_l R} \prod_{i \neq l}^{K^{\rm I}} \frac{1}{\sigma^2} \frac{x_i^+ - x_l^-}{x_i^- - x_l^+} \frac{1 - \frac{1}{x_i^- x_l^+}}{1 - \frac{1}{x_i^+ x_l^-}} \prod_{\alpha = 1}^2 \prod_{i=1}^{K^{\rm I}_{(\alpha)}} \sqrt{q} \frac{y_i^{(\alpha)} - x_l^-}{y_i^{(\alpha)} - x_l^+} \sqrt{\frac{x_l^+}{x_l^-}},$$

with two sets of

$$1 = \prod_{i=1}^{K^{\mathrm{I}}} \sqrt{q} \frac{y_m - x_i^-}{y_m - x_i^+} \sqrt{\frac{x_i^+}{x_i^-}} \prod_{i=1}^{K^{\mathrm{III}}} \frac{\sinh \frac{\pi g}{2k} \left(v_m - w_i - \frac{i}{g}\right)}{\sinh \frac{\pi g}{2k} \left(w_m - w_i + \frac{i}{g}\right)},$$

$$-1 = \prod_{i=1}^{K^{\mathrm{II}}} \frac{\sinh \frac{\pi g}{2k} \left(w_n - v_i + \frac{i}{g}\right)}{\sinh \frac{\pi g}{2k} \left(w_n - v_i - \frac{i}{g}\right)} \prod_{j=1}^{K^{\mathrm{III}}} \frac{\sinh \frac{\pi g}{2k} \left(w_n - w_j - \frac{2i}{g}\right)}{\sinh \frac{\pi g}{2k} \left(w_n - w_j - \frac{2i}{g}\right)},$$

• Thermodynamic limit of mABA: string hypothesis

The *q*-deformed mirror TBA Stijn J. van

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

Conclusion

- Recall $S = S_0 R \otimes R$
- Mirror ABA:

$$1 = e^{i\tilde{p}_l R} \prod_{i \neq l}^{K^{\rm I}} \frac{1}{\sigma^2} \frac{x_i^+ - x_l^-}{x_i^- - x_l^+} \frac{1 - \frac{1}{x_i^- x_l^+}}{1 - \frac{1}{x_i^+ x_l^-}} \prod_{\alpha=1}^2 \prod_{i=1}^{K^{\rm I}_{(\alpha)}} \sqrt{q} \frac{y_i^{(\alpha)} - x_l^-}{y_i^{(\alpha)} - x_l^+} \sqrt{\frac{x_l^+}{x_l^-}},$$

with two sets of

$$1 = \prod_{i=1}^{K^{\mathrm{I}}} \sqrt{q} \frac{y_m - x_i^-}{y_m - x_i^+} \sqrt{\frac{x_i^+}{x_i^-}} \prod_{i=1}^{K^{\mathrm{III}}} \frac{\sinh \frac{\pi g}{2k} \left(v_m - w_i - \frac{i}{g}\right)}{\sinh \frac{\pi g}{2k} \left(w_m - w_i + \frac{i}{g}\right)},$$

$$-1 = \prod_{i=1}^{K^{\mathrm{II}}} \frac{\sinh \frac{\pi g}{2k} \left(w_n - v_i + \frac{i}{g}\right)}{\sinh \frac{\pi g}{2k} \left(w_n - v_i - \frac{i}{g}\right)} \prod_{j=1}^{K^{\mathrm{III}}} \frac{\sinh \frac{\pi g}{2k} \left(w_n - w_j - \frac{2i}{g}\right)}{\sinh \frac{\pi g}{2k} \left(w_n - w_j - \frac{2i}{g}\right)}$$

- Thermodynamic limit of mABA: string hypothesis
 - Physical bound states of the mirror theory (S_0)

The *q*-deformed mirror TBA Stijn J. van

Finite size

The *q*-deformed model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

Conclusion

- Recall $S = S_0 R \otimes R$
- Mirror ABA:

$$1 = e^{i\tilde{p}_l R} \prod_{i \neq l}^{K^{\rm I}} \frac{1}{\sigma^2} \frac{x_i^+ - x_l^-}{x_i^- - x_l^+} \frac{1 - \frac{1}{x_i^- x_l^+}}{1 - \frac{1}{x_i^+ x_l^-}} \prod_{\alpha=1}^2 \prod_{i=1}^{K^{\rm I}_{(\alpha)}} \sqrt{q} \frac{y_i^{(\alpha)} - x_l^-}{y_i^{(\alpha)} - x_l^+} \sqrt{\frac{x_l^+}{x_l^-}},$$

with two sets of

$$1 = \prod_{i=1}^{K^{\mathrm{I}}} \sqrt{q} \frac{y_m - x_i^-}{y_m - x_i^+} \sqrt{\frac{x_i^+}{x_i^-}} \prod_{i=1}^{K^{\mathrm{III}}} \frac{\sinh \frac{\pi g}{2k} \left(v_m - w_i - \frac{i}{g}\right)}{\sinh \frac{\pi g}{2k} \left(w_n - w_i + \frac{i}{g}\right)},$$

$$-1 = \prod_{i=1}^{K^{\mathrm{II}}} \frac{\sinh \frac{\pi g}{2k} \left(w_n - v_i + \frac{i}{g}\right)}{\sinh \frac{\pi g}{2k} \left(w_n - v_i - \frac{i}{g}\right)} \prod_{j=1}^{K^{\mathrm{III}}} \frac{\sinh \frac{\pi g}{2k} \left(w_n - w_j - \frac{2i}{g}\right)}{\sinh \frac{\pi g}{2k} \left(w_n - w_j - \frac{2i}{g}\right)},$$

- Thermodynamic limit of mABA: string hypothesis
 - Physical bound states of the mirror theory (S_0)
 - ► String complexes of the auxiliary problem (*R*)

The *q*-deformed mirror TBA

Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

The *q*-deformed mirror TBA

Tongeren

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

$$1 = e^{i\bar{p}_l R} \prod_{i \neq l}^{K^{\rm I}} \frac{1}{\sigma^2} \frac{x_l^+ - x_i^-}{x_l^- - x_i^+} \frac{1 - \frac{1}{x_l^- x_i^+}}{1 - \frac{1}{x_l^+ x_i^-}}$$

The *q*-deformed mirror TBA Stijn J. van

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

• Infinite volume mirror theory: bound states?

$$1 = e^{i\bar{p}_l R} \prod_{i \neq l}^{K^{\rm I}} \frac{1}{\sigma^2} \frac{x_l^+ - x_i^-}{x_l^- - x_i^+} \frac{1 - \frac{1}{x_l^- x_i^+}}{1 - \frac{1}{x_r^+ x_i^-}}$$

• $\text{Im}(\tilde{p}_1) > 0$: bound state condition $x_1^- = x_2^+$, multiple solutions

The q-deformed mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

$$1 = e^{i\bar{p}_l R} \prod_{i \neq l}^{K^{\rm I}} \frac{1}{\sigma^2} \frac{x_l^+ - x_i^-}{x_l^- - x_i^+} \frac{1 - \frac{1}{x_l^- x_i^+}}{1 - \frac{1}{x_r^+ x_i^-}}$$

- Im(\tilde{p}_1) > 0: bound state condition $x_1^- = x_2^+$, multiple solutions
- Unique solution: physical mirror region

The q-deformed mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

Conclusion

$$1 = e^{i\tilde{p}_l R} \prod_{i \neq l}^{K^{\rm I}} \frac{1}{\sigma^2} \frac{x_l^+ - x_i^-}{x_l^- - x_i^+} \frac{1 - \frac{1}{x_l^- x_i^+}}{1 - \frac{1}{x_l^+ x_i^-}}$$

- Im(\tilde{p}_1) > 0: bound state condition $x_1^- = x_2^+$, multiple solutions
- Unique solution: physical mirror region

The q-deformed mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

Conclusion

$$1 = e^{i\tilde{p}_l R} \prod_{i \neq l}^{K^{\rm I}} \frac{1}{\sigma^2} \frac{x_l^+ - x_i^-}{x_l^- - x_i^+} \frac{1 - \frac{1}{x_l^- x_i^+}}{1 - \frac{1}{x_l^+ x_i^-}}$$

- $\text{Im}(\tilde{p}_1) > 0$: bound state condition $x_1^- = x_2^+$, multiple solutions
- Unique solution: physical mirror region

The *q*-deformed mirror TBA Stijn J. van

Tongeren

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

• Nice parametrization of the physical mirror region?

$$x^{\pm} \to x(u \pm i/g)$$

mirror TBA Stijn J. van

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

• Nice parametrization of the physical mirror region?

$$x^{\pm} \to x(u \pm i/g)$$

• q = 1 mirror region $\longleftrightarrow u$ -plane

mirror TBA Stijn J. van

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

• Nice parametrization of the physical mirror region? $x^{\pm} \rightarrow x(u \pm i/g)$

•
$$q = 1$$
 mirror region $\longleftrightarrow u$ -plane

$$x(u) = \frac{1}{2}(u - i\sqrt{4 - u^2})$$

mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

Conclusion

• Nice parametrization of the physical mirror region? $x^{\pm} \rightarrow x(u \pm i/g)$

$$q = 1$$
 mirror region $\longleftrightarrow u$ -plane
 $x(u) = \frac{1}{2}(u - i\sqrt{4 - u^2})$

•
$$q = e^{i\pi/k}$$
 mirror region $\leftarrow u$ -plane

mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

Conclusion

• Nice parametrization of the physical mirror region? $x^{\pm} \rightarrow x(u \pm i/g)$

$$q = 1$$
 mirror region $\longleftrightarrow u$ -plane
 $x(u) = \frac{1}{2}(u - i\sqrt{4 - u^2})$

$$y = e^{i\pi/k} \text{ mirror region} \leftarrow u\text{-plane}$$
$$x(u) = \frac{e^{\frac{\pi gu}{2k}} \left(\sinh\frac{\pi gu}{2k} - i\sqrt{g^2 \sin^2\frac{\pi}{k} - \sinh^2\frac{g\pi u}{2k}}\right) - g^2 \sin^2\frac{\pi}{k}}{g\sin\frac{\pi}{k}\sqrt{1 + g^2 \sin^2\frac{\pi}{k}}}$$

The *q*-deformed mirror TBA Stijn J. van

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

• Bigger bound states?

mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

• Bigger bound states?
$$x_1^- = x_2^+, x_2^- = x_3^+, \dots, x_{Q-1}^- = x_Q^+$$

mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deformed model

```
q-deformed spin chain TBA
```

The *q*-deformed AdS₅ \times S⁵ mirror TBA

- Bigger bound states? $x_1^- = x_2^+, x_2^- = x_3^+, \dots, x_{Q-1}^- = x_Q^+$
 - On the *u*-plane we get standard Bethe strings

$$u_j = u + \frac{i}{g}(Q + 1 - 2j), \quad j = 1, \dots, Q$$

mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

- Bigger bound states? $x_1^- = x_2^+, x_2^- = x_3^+, \dots, x_{Q-1}^- = x_Q^+$
- On the *u*-plane we get standard Bethe strings

$$u_j = u + \frac{i}{g}(Q + 1 - 2j), \quad j = 1, \dots, Q$$

• Undeformed mirror region = the *u*-plane: *Q* arbitrary

mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

- Bigger bound states? $x_1^- = x_2^+, x_2^- = x_3^+, \dots, x_{Q-1}^- = x_Q^+$
- On the *u*-plane we get standard Bethe strings

$$u_j = u + \frac{i}{g}(Q + 1 - 2j), \quad j = 1, \dots, Q$$

- Undeformed mirror region = the *u*-plane: *Q* arbitrary
- Deformed mirror region = strip on the *u*-plane: $Q \le k$

mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

- Bigger bound states? $x_1^- = x_2^+, x_2^- = x_3^+, \dots, x_{Q-1}^- = x_Q^+$
- On the *u*-plane we get standard Bethe strings

$$u_j = u + \frac{i}{g}(Q + 1 - 2j), \quad j = 1, \dots, Q$$

- Undeformed mirror region = the *u*-plane: *Q* arbitrary
- Deformed mirror region = strip on the *u*-plane: $Q \le k$
- The deformed theory has a finite spectrum of physical excitations

mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

- Bigger bound states? $x_1^- = x_2^+, x_2^- = x_3^+, \dots, x_{Q-1}^- = x_Q^+$
- On the *u*-plane we get standard Bethe strings

$$u_j = u + \frac{i}{g}(Q + 1 - 2j), \quad j = 1, \dots, Q$$

- Undeformed mirror region = the *u*-plane: *Q* arbitrary
- Deformed mirror region = strip on the *u*-plane: $Q \le k$
- The deformed theory has a finite spectrum of physical excitations
- What about the auxiliary particles?

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

• We would like to understand the spectrum associated to *R*

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

- We would like to understand the spectrum associated to *R*
- R for $\mathfrak{psu}(2|2) \to \operatorname{Hubbard}$

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

- We would like to understand the spectrum associated to *R*
- *R* for $\mathfrak{psu}(2|2) \to \operatorname{Hubbard}$
- *R* for $\mathfrak{psu}_q(2|2) \to q$ -Hubbard?

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

- We would like to understand the spectrum associated to R
- *R* for $\mathfrak{psu}(2|2) \to \operatorname{Hubbard}$
- R for $\mathfrak{psu}_q(2|2) \to q$ -Hubbard?
- "Similar" to the q-deformation of the XXX spin chain

The *q*-deformed mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

Conclusion

• String hypothesis: Bethe strings of arbitrary length M

The *q*-deformed mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

- String hypothesis: Bethe strings of arbitrary length M
- Y-function for each M-string

The *q*-deformed mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

- String hypothesis: Bethe strings of arbitrary length M
- Y-function for each M-string

$$\log Y_M = \log \left(1 + Y_{M+1}\right) \left(1 + Y_{M-1}\right) \star s$$
$$\left(s(u) = \frac{1}{4\cosh \pi u/2}\right)$$

The *q*-deformed mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

- String hypothesis: Bethe strings of arbitrary length M
- Y-function for each M-string

$$\log Y_M = \log \left(1 + Y_{M+1}\right) \left(1 + Y_{M-1}\right) \star s$$
$$\left(s(u) = \frac{1}{4\cosh \pi u/2}\right)$$

mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

• q-def XXX spin chain is XXZ ($\Delta = \cos \pi/k$)

- mirror TBA Stijn J. van Tongeren
- Finite size AdS/CFT
- The *q*-deforr model
- *q*-deformed spin chain TBA
- The q-deformed AdS₅ × S⁵ mirror TBA
- Conclusion

- *q*-def XXX spin chain is XXZ ($\Delta = \cos \pi/k$)
- Different string hypothesis! Especially for $k \in \mathbb{Z}$

- mirror TBA Stijn J. van Tongeren
- Finite size AdS/CFT
- The *q*-deform model
- *q*-deformed spin chain TBA
- The q-deformed AdS₅ × S⁵ mirror TBA
- Conclusion

- q-def XXX spin chain is XXZ ($\Delta = \cos \pi/k$)
- Different string hypothesis! Especially for $k \in \mathbb{Z}$
- Still Bethe strings, but not all M allowed

- mirror TBA Stijn J. van Tongeren
- Finite size AdS/CFT
- The *q*-deform model
- *q*-deformed spin chain TBA
- The q-deformed AdS₅ × S⁵ mirror TBA
- Conclusion

- *q*-def XXX spin chain is XXZ ($\Delta = \cos \pi/k$)
- Different string hypothesis! Especially for $k \in \mathbb{Z}$
- Still Bethe strings, but not all M allowed
 - $M = 1, \ldots, k 1$, with $u \in \mathbb{R}$ ("positive parity")

- mirror TBA Stijn J. van Tongeren
- Finite size AdS/CFT
- The *q*-deform model
- *q*-deformed spin chain TBA
- The q-deformed AdS₅ × S⁵ mirror TBA
- Conclusion

- q-def XXX spin chain is XXZ ($\Delta = \cos \pi/k$)
- Different string hypothesis! Especially for $k \in \mathbb{Z}$
- Still Bethe strings, but not all M allowed
 - $M = 1, \dots, k 1$, with $u \in \mathbb{R}$ ("positive parity")
 - M = 1 with Im(u) = ik ("negative parity")

- The *q*-deformed mirror TBA Stijn J. van Tongeren
- Finite size AdS/CFT
- The *q*-deform model
- *q*-deformed spin chain TBA
- The q-deformed AdS₅ × S⁵ mirror TBA
- Conclusion

• Negative parity string scatters inversely to a k - 1 string

The *q*-deformed mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

- Negative parity string scatters inversely to a k 1 string
- Results in special relation: $\tilde{Y}_1 = (Y_{k-1})^{-1}$

The *q*-deformed mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

- Negative parity string scatters inversely to a k 1 string
- Results in special relation: $\tilde{Y}_1 = (Y_{k-1})^{-1}$

The *q*-deformed mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

Conclusion

- Negative parity string scatters inversely to a k 1 string
- Results in special relation: $\tilde{Y}_1 = (Y_{k-1})^{-1}$

 $\log Y_{M} = \log (1 + Y_{M+1}) (1 + Y_{M-1}) \star s$ $\log Y_{k-2} = \log (1 + Y_{k-3}) (1 + Y_{k-1})^{2} \star s$ $\log Y_{k-1} = \log (1 + Y_{k-2}) \star s$

mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

Conclusion

• $\mathfrak{su}_q(2)$: Hermitian, nice, elegant, 'simple'

The *q*-deformed mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

- $\mathfrak{su}_q(2)$: Hermitian, nice, elegant, 'simple'
- $\mathfrak{su}_q(3)$: interesting, but complex and rather strange

The *q*-deformed mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

Conclusion

- $\mathfrak{su}_q(2)$: Hermitian, nice, elegant, 'simple'
- $\mathfrak{su}_q(3)$: interesting, but complex and rather strange

Saleur and Wehefritz-Kaufmann '00

The *q*-deformed mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

- $\mathfrak{su}_q(2)$: Hermitian, nice, elegant, 'simple'
- $\mathfrak{su}_q(3)$: interesting, but complex and rather strange

• $\mathfrak{su}_a(N)$: ???

Saleur and Wehefritz-Kaufmann '00

The *q*-deformed mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

- $\mathfrak{su}_q(2)$: Hermitian, nice, elegant, 'simple'
- $\mathfrak{su}_q(3)$: interesting, but complex and rather strange

Saleur and Wehefritz-Kaufmann '00

- $\mathfrak{su}_q(N)$: ???
- $\mathfrak{su}_q(2|2)$: can be nice, elegant, 'simple', real

Quantum deformed Hubbard TBA

mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

Conclusion

• Our model has $\mathfrak{psu}_q(2|2)$ mirror auxiliary Bethe equations

Quantum deformed Hubbard TBA

mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

- Our model has $\mathfrak{psu}_q(2|2)$ mirror auxiliary Bethe equations
- Come from a pseudo-unitary *R*-matrix $(R^{\dagger} = AR^{-1}A^{-1})$

Quantum deformed Hubbard TBA

mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

- Our model has $\mathfrak{psu}_q(2|2)$ mirror auxiliary Bethe equations
- Come from a pseudo-unitary *R*-matrix ($R^{\dagger} = AR^{-1}A^{-1}$)
- Two classes of pseudo-unitary QM ($H \sim \sum i \partial \log R$)

mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

- Our model has $\mathfrak{psu}_q(2|2)$ mirror auxiliary Bethe equations
- Come from a pseudo-unitary *R*-matrix ($R^{\dagger} = AR^{-1}A^{-1}$)
- Two classes of pseudo-unitary QM ($H \sim \sum i \partial \log R$)
 - Self-conjugate spectrum

mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

- Our model has $\mathfrak{psu}_q(2|2)$ mirror auxiliary Bethe equations
- Come from a pseudo-unitary *R*-matrix ($R^{\dagger} = AR^{-1}A^{-1}$)
- Two classes of pseudo-unitary QM ($H \sim \sum i \partial \log R$)
 - Self-conjugate spectrum
 - Real spectrum

mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

- Our model has $\mathfrak{psu}_q(2|2)$ mirror auxiliary Bethe equations
- Come from a pseudo-unitary *R*-matrix ($R^{\dagger} = AR^{-1}A^{-1}$)
- Two classes of pseudo-unitary QM ($H \sim \sum i \partial \log R$)
 - Self-conjugate spectrum
 - ► Real spectrum (quasi-unitary; \exists "A" = OO^{\dagger} , $H^{\dagger} = OO^{\dagger}H(OO^{\dagger})^{-1}$)

mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

- Our model has $\mathfrak{psu}_q(2|2)$ mirror auxiliary Bethe equations
- Come from a pseudo-unitary *R*-matrix $(R^{\dagger} = AR^{-1}A^{-1})$
- Two classes of pseudo-unitary QM ($H \sim \sum i \partial \log R$)
 - Self-conjugate spectrum
 - ► Real spectrum (quasi-unitary; \exists "A" = OO^{\dagger} , $H^{\dagger} = OO^{\dagger}H(OO^{\dagger})^{-1}$)
- Multi-body *R* is really only pseudo-unitary on the string line

mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

- Our model has $\mathfrak{psu}_q(2|2)$ mirror auxiliary Bethe equations
- Come from a pseudo-unitary *R*-matrix $(R^{\dagger} = AR^{-1}A^{-1})$
- Two classes of pseudo-unitary QM ($H \sim \sum i \partial \log R$)
 - Self-conjugate spectrum
 - ► Real spectrum (quasi-unitary; \exists "A" = OO^{\dagger} , $H^{\dagger} = OO^{\dagger}H(OO^{\dagger})^{-1}$)
- Multi-body *R* is really only pseudo-unitary on the string line
- But multi-body *R* appears to be quasi-unitary on the mirror line!

mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

- Our model has $\mathfrak{psu}_q(2|2)$ mirror auxiliary Bethe equations
- Come from a pseudo-unitary *R*-matrix $(R^{\dagger} = AR^{-1}A^{-1})$
- Two classes of pseudo-unitary QM ($H \sim \sum i \partial \log R$)
 - Self-conjugate spectrum
 - ► Real spectrum (quasi-unitary; \exists "A" = OO^{\dagger} , $H^{\dagger} = OO^{\dagger}H(OO^{\dagger})^{-1}$)
- Multi-body *R* is really only pseudo-unitary on the string line
- But multi-body *R* appears to be quasi-unitary on the mirror line!
- *Mirror* $\mathfrak{psu}_q(2|2)$ string complexes and TBA are 'real'

The *q*-deformed mirror TBA Stijn J. van

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

Conclusion

• Mirror $\mathfrak{psu}(2|2)$: Hubbard model

The *q*-deformed mirror TBA Stijn J. van

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

Conclusion

• Mirror $\mathfrak{psu}(2|2)$: Hubbard model (y(v) & w roots)

The *q*-deformed mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

- Mirror psu(2|2): Hubbard model (y(v) & w roots)
- String hypothesis:

The *q*-deformed mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

- Mirror psu(2|2): Hubbard model (y(v) & w roots)
- String hypothesis:
 - y-particles (\pm)

The *q*-deformed mirror TBA Stijn J. van

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

- Mirror psu(2|2): Hubbard model (y(v) & w roots)
- String hypothesis:
 - ► y-particles (±)
 - M|w strings, any $M(\mathfrak{su}(2))$

The *q*-deformed mirror TBA Stijn J. van

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

- Mirror psu(2|2): Hubbard model (y(v) & w roots)
- String hypothesis:
 - ► y-particles (±)
 - M|w strings, any $M(\mathfrak{su}(2))$
 - M | vw strings, any $M (\mathfrak{su}(2))$

The *q*-deformed mirror TBA Stijn J. van

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

- Mirror psu(2|2): Hubbard model (y(v) & w roots)
- String hypothesis:
 - ► *y*-particles (±)
 - M|w strings, any $M(\mathfrak{su}(2))$
 - M | vw strings, any $M (\mathfrak{su}(2))$

The *q*-deformed mirror TBA Stijn J. van

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

Conclusion

- Mirror psu(2|2): Hubbard model (y(v) & w roots)
- String hypothesis:
 - y-particles (\pm)
 - M|w strings, any $M(\mathfrak{su}(2))$
 - M | vw strings, any $M (\mathfrak{su}(2))$

• q-deformed mirror string hypothesis: constrained as XXZ

The *q*-deformed mirror TBA Stijn J. van

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

Conclusion

- Mirror psu(2|2): Hubbard model (y(v) & w roots)
- String hypothesis:
 - ► *y*-particles (±)
 - M|w strings, any $M(\mathfrak{su}(2))$
 - M | vw strings, any $M (\mathfrak{su}(2))$

• q-deformed mirror string hypothesis: constrained as XXZ

Undeformed Mirror TBA

Undeformed Mirror TBA

The q-deformed mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

Two Hubbard subsystems

Undeformed Mirror TBA

The *q*-deformed mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

Two Hubbard subsystems coupled via (∞) *Q*-particles

q-deformed Mirror TBA

q-deformed Mirror TBA

The *q*-deformed mirror TBA Stijn J. van

Two q-Hubbard subsystems

q-deformed Mirror TBA

The *q*-deformed mirror TBA Stijn J. van

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

Two q-Hubbard subsystems coupled via k Q-particles

q-deformed Mirror TBA equations

q-deformed Mirror TBA equations

nirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

$$\begin{split} \log Y_{M|w} &= \log \left(1 + Y_{M+1|w} \right) \left(1 + Y_{M-1|w} \right) \star s - \log \left(1 + Y_{M+1} \right) \star s + \delta_{M,1} \log \left(\frac{1 - Y_{-}}{1 - Y_{+}} \right) \hat{\star} s \\ \log Y_{k-2|w} &= \log \left(1 + Y_{k-3|w} \right) \left(1 + Y_{k-1|w} \right)^{2} \star s - \log \left(1 + Y_{k-1} \right) \star s , \\ \log Y_{k-1|w} &= \log \left(1 + Y_{k-2|w} \right) \star s - \log \left(1 + Y_{k} \right) \star s , \\ \log Y_{M|w} &= \log \left(1 + Y_{M+1|w} \right) \left(1 + Y_{M-1|w} \right) \star s + \delta_{M,1} \log \left(\frac{1 - Y_{-}^{-1}}{1 - Y_{+}^{-1}} \right) \hat{\star} s , \\ \log Y_{k-2|w} &= \log \left(1 + Y_{k-3|w} \right) \left(1 + Y_{k-1|w} \right)^{2} \star s , \\ \log Y_{k-2|w} &= \log \left(1 + Y_{k-3|w} \right) \left(1 + Y_{k-1|w} \right)^{2} \star s , \\ \log Y_{k-1|w} &= \log \left(1 + Y_{k-2|w} \right) \star s , \\ \end{split}$$

$$\log Y_{\pm} = -\log (1+Y_Q) \star K_{\pm}^{Qy} + \log \frac{1+Y_{M|_{W}}^{-1}}{1+Y_{M|_{W}}^{-1}} \star K_M + \log \frac{(1+Y_{k-1|_{VW}})}{(1+Y_{k-1|_{W}})} \star K_{k-1}$$

q-deformed Mirror TBA equations

nirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

$$\begin{split} \log Y_{M|vw} &= \log \left(1 + Y_{M+1|vw}\right) (1 + Y_{M-1|vw}) \star s - \log \left(1 + Y_{M+1}\right) \star s + \delta_{M,1} \log \left(\frac{1 - Y_{-}}{1 - Y_{+}}\right) \hat{\star} s \\ \log Y_{k-2|vw} &= \log \left(1 + Y_{k-3|vw}\right) (1 + Y_{k-1|vw})^2 \star s - \log \left(1 + Y_{k-1}\right) \star s , \\ \log Y_{k-1|vw} &= \log \left(1 + Y_{k-2|vw}\right) \star s - \log \left(1 + Y_{k}\right) \star s , \\ \log Y_{M|w} &= \log \left(1 + Y_{M+1|w}\right) (1 + Y_{M-1|w}) \star s + \delta_{M,1} \log \left(\frac{1 - Y_{-}^{-1}}{1 - Y_{+}^{-1}}\right) \hat{\star} s , \\ \log Y_{k-2|w} &= \log \left(1 + Y_{k-3|w}\right) (1 + Y_{k-1|w})^2 \star s , \\ \log Y_{k-2|w} &= \log \left(1 + Y_{k-3|w}\right) (1 + Y_{k-1|w})^2 \star s , \\ \log Y_{k-1|w} &= \log \left(1 + Y_{k-2|w}\right) \star s , \\ \log Y_{\pm} &= -\log \left(1 + Y_{Q}\right) \star K_{\pm}^{Qy} + \log \frac{1 + Y_{M|vw}^{-1}}{1 + Y_{M|w}^{-1}} \star K_{M} + \log \frac{\left(1 + Y_{k-1|vw}\right)}{\left(1 + Y_{k-1|w}\right)} \star K_{k-1} . \end{split}$$

$$\begin{split} \log Y_1 &= \log \frac{\left(1 - Y_-^{-1}\right)^2}{1 + Y_2^{-1}} \star s - \check{\Delta} \check{\star} s \,, \\ \log Y_Q &= \log \frac{Y_{Q+1} Y_{Q-1}}{(1 + Y_{Q-1})(1 + Y_{Q+1})} \star s + \log \left(1 + Y_{Q-1}^{-1}|_{vw}\right)^2 \star s \,, \\ \log Y_k &= 2 \log Y_{k-1} \star s - \log (1 + Y_{k-1}) \star s + \log \left(1 + Y_{k-1}^{-1}|_{vw}\right)^4 \star s \,. \end{split}$$

The *q*-deformed mirror TBA

> Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

• The presented TBA equations are in simplified form; closest to Y-system

mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The q-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

- The presented TBA equations are in simplified form; closest to Y-system
- They are derived from so-called canonical equations by applying

$$(K+1)_{MN}^{-1} = \delta_{M,N} - (\delta_{M,N+1} + \delta_{M,N-1})s$$

relying on identities satisfied by kernels for N and $N\pm 1$ bound states

mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

- The presented TBA equations are in simplified form; closest to Y-system
- They are derived from so-called canonical equations by applying

$$(K+1)_{MN}^{-1} = \delta_{M,N} - (\delta_{M,N+1} + \delta_{M,N-1})s$$

relying on identities satisfied by kernels for N and $N \pm 1$ bound states

• We have a boundary, so what about boundary +1?

mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

- The presented TBA equations are in simplified form; closest to Y-system
- They are derived from so-called canonical equations by applying

$$(K+1)_{MN}^{-1} = \delta_{M,N} - (\delta_{M,N+1} + \delta_{M,N-1})s$$

relying on identities satisfied by kernels for N and $N \pm 1$ bound states

- We have a boundary, so what about boundary +1?
- For XXZ type equations this still works; would-be length *k* bound states scatter trivially (add zero)

$$Y_{k-1|w}^+ Y_{k-1|w}^- = 1 + Y_{k-2|w}$$

mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

- The presented TBA equations are in simplified form; closest to Y-system
- They are derived from so-called canonical equations by applying

$$(K+1)_{MN}^{-1} = \delta_{M,N} - (\delta_{M,N+1} + \delta_{M,N-1})s$$

relying on identities satisfied by kernels for N and $N \pm 1$ bound states

- We have a boundary, so what about boundary +1?
- For XXZ type equations this still works; would-be length *k* bound states scatter trivially (add zero)

$$Y_{k-1|w}^+ Y_{k-1|w}^- = 1 + Y_{k-2|w}$$

• For our momentum carrying particles this is *not* the case

mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

• Still, we derived

$$\log Y_{k} = 2 \log Y_{k-1} \star s - \log(1 + Y_{k-1}) \star s + \log \prod_{\alpha=1,2} \left(1 + \frac{1}{Y_{k-1|w}^{(\alpha)}} \right)^{2} \star s$$

mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

• Still, we derived

$$\log Y_{k} = 2 \log Y_{k-1} \star s - \log(1 + Y_{k-1}) \star s + \log \prod_{\alpha = 1, 2} \left(1 + \frac{1}{Y_{k-1|vw}^{(\alpha)}} \right)^{2} \star s$$

• Idea: if we had a length k + 1 bound state we would be ok at k

mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

• Still, we derived

$$\log Y_{k} = 2 \log Y_{k-1} \star s - \log(1 + Y_{k-1}) \star s + \log \prod_{\alpha=1,2} \left(1 + \frac{1}{Y_{k-1|w}^{(\alpha)}} \right)^{2} \star s$$

- Idea: if we had a length k + 1 bound state we would be ok at k
- Nice relation between k + 1 and k 1?

$$S_{k+1}(u) = S_{k-1}(u) \underbrace{S_1(u+ik/g)S_1(u-ik/g)}_{S_1(u-ik/g)}$$

mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

• Still, we derived

$$\log Y_{k} = 2 \log Y_{k-1} \star s - \log(1 + Y_{k-1}) \star s + \log \prod_{\alpha=1,2} \left(1 + \frac{1}{Y_{k-1|w}^{(\alpha)}} \right)^{2} \star s$$

- Idea: if we had a length k + 1 bound state we would be ok at k
- Nice relation between k + 1 and k 1?

$$S_{k+1}(u) = S_{k-1}(u) \underbrace{S_1(u + ik/g)S_1(u - ik/g)}_{S_1(u - ik/g)}$$

• For auxiliary kernels the remainder are some known kernels

mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

Conclusion

• Still, we derived

$$\log Y_{k} = 2 \log Y_{k-1} \star s - \log(1 + Y_{k-1}) \star s + \log \prod_{\alpha = 1, 2} \left(1 + \frac{1}{Y_{k-1|w}^{(\alpha)}} \right)^{2} \star s$$

- Idea: if we had a length k + 1 bound state we would be ok at k
- Nice relation between k + 1 and k 1?

$$S_{k+1}(u) = S_{k-1}(u) \underbrace{S_1(u + ik/g)S_1(u - ik/g)}_{S_1(u - ik/g)}$$

- For auxiliary kernels the remainder are some known kernels
- For S_0 , precisely with $q = e^{i\pi/k}$ we get crossing!

mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

Conclusion

• Still, we derived

$$\log Y_{k} = 2 \log Y_{k-1} \star s - \log(1 + Y_{k-1}) \star s + \log \prod_{\alpha = 1, 2} \left(1 + \frac{1}{Y_{k-1|w}^{(\alpha)}} \right)^{2} \star s$$

- Idea: if we had a length k + 1 bound state we would be ok at k
- Nice relation between k + 1 and k 1?

$$S_{k+1}(u) = S_{k-1}(u) \underbrace{S_1(u+ik/g)S_1(u-ik/g)}_{S_1(u-ik/g)}$$

- For auxiliary kernels the remainder are some known kernels
- For S_0 , precisely with $q = e^{i\pi/k}$ we get crossing!
- Total remainder is then just the equation for $Y_{k-1|vw}$; done

ne *q*-deformed mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deforme model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

Reversing the logic

Crossing and the finite Y-system III

mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

Reversing the logic

• Assuming the bound state S_0 satisfies discrete Laplace

$$\frac{S_{MN}^{+}S_{MN}^{-}}{S_{MN+1}S_{MN-1}} = 1$$

Crossing and the finite Y-system III

mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deforme model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

Reversing the logic

• Assuming the bound state S_0 satisfies discrete Laplace

$$\frac{S_{MN}^{+}S_{MN}^{-}}{S_{MN+1}S_{MN-1}} = 1$$

• and the existence of a Y-system

Crossing and the finite Y-system III

mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deforme model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

Reversing the logic

• Assuming the bound state S_0 satisfies discrete Laplace

$$\frac{S_{MN}^{+}S_{MN}^{-}}{S_{MN+1}S_{MN-1}} = 1$$

• and the existence of a Y-system

we can 'derive' the crossing equation!

The <i>q</i> -deformed mirror TBA
Stijn J. van Tongeren
Finite size AdS/CFT
The <i>q</i> -deformed model
<i>q</i> -deformed spin chain TBA
The <i>q</i> -deformed AdS ₅ \times S ⁵ mirror TBA
Conclusion

The *q*-deformed mirror TBA Stiin L yan

Tongeren

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

• TBA in finite size AdS/CFT

The *q*-deformed mirror TBA Stijn J. van

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

- TBA in finite size AdS/CFT
- q-deformed mirror model: spectrum bounded

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

- TBA in finite size AdS/CFT
- q-deformed mirror model: spectrum bounded
- q-deformed auxiliary TBA

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

- TBA in finite size AdS/CFT
- q-deformed mirror model: spectrum bounded
- q-deformed auxiliary TBA
 - XXX to XXZ: interesting TBA structure

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

- TBA in finite size AdS/CFT
- q-deformed mirror model: spectrum bounded
- q-deformed auxiliary TBA
 - ► XXX to XXZ: interesting TBA structure
 - ► *q*-Hubbard: analogous new nice TBA structure

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

- TBA in finite size AdS/CFT
- q-deformed mirror model: spectrum bounded
- q-deformed auxiliary TBA
 - ► XXX to XXZ: interesting TBA structure
 - ► q-Hubbard: analogous new nice TBA structure
 - ▶ Possible due to 'reality' of the mirror *q*-Hubbard model

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

- TBA in finite size AdS/CFT
- q-deformed mirror model: spectrum bounded
- q-deformed auxiliary TBA
 - ► XXX to XXZ: interesting TBA structure
 - ► *q*-Hubbard: analogous new nice TBA structure
 - ▶ Possible due to 'reality' of the mirror *q*-Hubbard model
- q-deformed mirror TBA and Y-system

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

- TBA in finite size AdS/CFT
- q-deformed mirror model: spectrum bounded
- q-deformed auxiliary TBA
 - ► XXX to XXZ: interesting TBA structure
 - ► *q*-Hubbard: analogous new nice TBA structure
 - ▶ Possible due to 'reality' of the mirror *q*-Hubbard model
- q-deformed mirror TBA and Y-system
 - Closure relies *essentially* on crossing

Finite size AdS/CFT

The *q*-deformed model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

Conclusion

• Excited states via asymptotic solution (coming soon)

Finite size AdS/CFT

The *q*-deform model

q-deformed spin chain TBA

The *q*-deformed AdS₅ \times S⁵ mirror TBA

- Excited states via asymptotic solution (coming soon)
- Special relations between *T*-functions

Finite size AdS/CFT

The *q*-deforn model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

- Excited states via asymptotic solution (coming soon)
- Special relations between *T*-functions
- Further insight into the $AdS_5 \times S^5$ mirror model

Outlook

The *q*-deformed mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deforn model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

- Excited states via asymptotic solution (coming soon)
- Special relations between *T*-functions
- Further insight into the $AdS_5 \times S^5$ mirror model
- 'Regularization' of the $AdS_5 \times S^5$ mirror TBA

Outlook

The *q*-deformed mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deforn model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

- Excited states via asymptotic solution (coming soon)
- Special relations between *T*-functions
- Further insight into the $AdS_5 \times S^5$ mirror model
- 'Regularization' of the $AdS_5 \times S^5$ mirror TBA
- Deformation with q real

Outlook

The *q*-deformed mirror TBA Stijn J. van Tongeren

Finite size AdS/CFT

The *q*-deforn model

q-deformed spin chain TBA

The q-deformed AdS₅ × S⁵ mirror TBA

- Excited states via asymptotic solution (coming soon)
- Special relations between *T*-functions
- Further insight into the $AdS_5 \times S^5$ mirror model
- 'Regularization' of the $AdS_5 \times S^5$ mirror TBA
- Deformation with q real
- (TBA for) q-Hubbard proper (Alcaraz-Bariev)

