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N = 4 SYM stress-tensor multiplet in analytic superspace

✔ N = 4 SYM stress-tensor multiplet in ordinary superspace

✗ Half-BPS operator made of 6 scalars ΦI , I = 1, . . . , 6:

OIJ
20′ = tr(ΦIΦJ )− 1/6 δIJ tr(ΦKΦK)

✗ Lowest-weight state of the N = 4 stress-tensor supermultiplet:

T (x, θA, θ̄A) = O + . . .+ (θ)4LN=4 + . . .+ (θσµθ̄)(θσν θ̄)Tµν + . . .

✗ T is not chiral, but depends on θA, θ̄A (A = 1, 2, 3, 4) in a restricted half-BPS way

✔ N = 4 analytic (harmonic) superspace and half-BPS shortening (Hartwell&Heslop&Howe;
Eden&Ferrara&ES):

✗ Break SU(4) → SU(2)× SU(2)′ × U(1) with the help of auxiliary harmonic coordinates ya
a′

θAα → (ρaα , θ a′

α ) , with ρaα = θaα + θa
′

α yaa′

✗ half-BPS = Grassmann analyticity:

T = T (xα̇α, ρaα, ρ̄
α̇
a′ , y

a
a′ ) = O(x, y) + . . .+ (ρ)4LN=4(x) + . . .+ (ρσµρ̄)(ρσν ρ̄)Tµν(x) + . . .
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N = 4 SYM stress-tensor multiplet in analytic superspace II

✔ Lowest weight state has harmonic dependence

O(x, y) = YI YJ OIJ
20′ (x) = YI YJ tr

(

ΦIΦJ
)

,

where Y I(y), Y 2 = 0 are null vectors of SO(6).

✔ Restrict the odd expansion to the chiral sector

T (x, ρ, ρ̄ = 0, y) = O(x, y) + . . .+ (ρ)4LN=4(x)

✔ N = 4 SYM action as an integral over 1/4 superspace (Howe et al):

SN=4 =

∫

d4xLN=4(x) =

∫

d4x

∫

d4ρ T (x, ρ, 0, y)

✗ Supersymmetric due to the special properties of the (on-shell) stress-tensor multiplet
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Correlation functions of the N = 4 stress-tensor multiplet

✔ n−point correlation function of analytic supermultiplets T (x, ρ, 0, y)

Gn = 〈T (1) . . . T (n)〉 =

n−4
∑

k=0

∞
∑

ℓ=0

aℓ+k G
(ℓ)
n;k(1, . . . , n) , a = g2Nc/(4π

2)

The ℓ−loop correction G
(ℓ)
n;k ∼ (ρ)4k is a homogeneous polynomial in the odd variables

✔ Consider the four-point case n = 4 ⇒ k = 0: no ρ dependence in the chiral sector. So, we can
replace T (x, ρ, 0, y) by just the bosonic 1/2-BPS operator O(x, y):

G4 = 〈O(x1, y1) . . .O(x4, y4)〉 =
∞
∑

ℓ=0

aℓ G
(ℓ)
4 (1, 2, 3, 4)

✔ Born level (with x2
ij = (xi − xj)

2, y2ij = (yi − yj)
2)

G
(0)
4 (1, 2, 3, 4) =

N2
c − 1

(4π2)4

(

y212
x2
12

y223
x2
23

y234
x2
34

y241
x2
41

+
y212
x2
12

y224
x2
24

y234
x2
34

y213
x2
13

+
y213
x2
13

y223
x2
23

y224
x2
24

y241
x2
41

)

+ disconnected

✔ Duality with super-amplitudes/Wilson loops (Alday&Eden&Korchemsky&Maldacena&ES):

lim
x2
i,i+1→0

(Gn;k/G
(0)
n ) = [ANkMHV

n /AMHV tree
n ]2
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Correlation functions II

✔ Loop correction via Lagrangian insertions

a
d

da
G4 =

∫

d4x5 〈O(x1, y1) . . .O(x4, y4)LN=4(x5)〉

✗ Repeat ℓ times: the ℓ−loop 4-point function is given by the Born-level (4 + ℓ)−point function

G
(0)
4+ℓ;ℓ|ρ1=...=ρ4=0 = 〈O(x1, y1) . . .O(x4, y4)L(x5) . . .L(x4+ℓ)〉

(0)(ρ5)
4 . . . (ρ4+ℓ)

4∝ aℓ

This is a particular component of the super-correlator of 4 + ℓ stress-tensor multiplets:

〈T (ρ1 = 0) . . . T (ρ4 = 0)T (5) . . . T (4 + ℓ)〉

✔ Integrand of the 4-point function as a Born-level correlator of stress-tensor multiplets

G
(ℓ)
4 (1, 2, 3, 4) =

∫

d4x5 . . . d
4x4+ℓ

(

1

ℓ!

∫

d4ρ5 . . . d
4ρ4+ℓ G

(0)
4+ℓ;ℓ(1, . . . , 4 + ℓ)

)

What do we know about this tree-level correlator?
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Correlation functions III

✔ Examples at one and two loops

G
(0)
5;1(1, 2, 3, 4, 5) =

2 (N2
c − 1)

(4π2)5
× I5 ×

1
∏

1≤i<j≤5 x
2
ij

G
(0)
6;2(1, 2, 3, 4, 5, 6) =

2 (N2
c − 1)

(4π2)6
× I6 ×

1
48

∑

σ∈S6
x2
σ1σ2

x2
σ3σ4

x2
σ5σ6

∏

1≤i<j≤6 x
2
ij

✔ Essential ingredient: nilpotent n-point superconformal invariant of Grassmann degree 4(n− 4)

In|ρ1=...=ρ4=0 = (x2
12x

2
13x

2
14x

2
23x

2
24x

2
34)×R(1, 2, 3, 4)× (ρ5)

4 . . . (ρn)
4

R(1, 2, 3, 4) =
y212y

2
23y

2
34y

2
14

x2
12x

2
23x

2
34x

2
14

(x2
13x

2
24 − x2

12x
2
34 − x2

14x
2
23) + similar terms

✗ In can be constructed by using the odd part of PSU(2, 2|4) to restore ρ1, . . . , ρ4.

✗ In has SU(4) and conformal weights matching those of O(x, y)

✗ Crucial property: In(1, . . . , n) is fully permutation invariant.

✔ In summary: the (4 + ℓ)−point tree-level correlator has the general form

G
(0)
4+ℓ;ℓ(1, . . . , 4 + ℓ) =

2 (N2
c − 1)

(4π2)4+ℓ
× I4+ℓ × f(ℓ)(x1, . . . , x4+ℓ)

f(ℓ) is a permutation invariant function of x1, . . . , x4+ℓ with conformal weight (+4) at each point.
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Hidden permutation symmetry of the integrand

✔ We predict the form of the four-point correlator at ℓ loops:

G
(ℓ)
4 (1, 2, 3, 4) =

2 (N2
c − 1)

(4π2)4
×R(1, 2, 3, 4)× F (ℓ) for ℓ ≥ 1

F (ℓ)(x1, x2, x3, x4) =
x2
12x

2
13x

2
14x

2
23x

2
24x

2
34

ℓ! (4π2)ℓ

∫

d4x5 . . . d
4x4+ℓ f

(ℓ)(x1, . . . , x4+ℓ)

f(ℓ)(x1, . . . , x4+ℓ) =
P (ℓ)(x1, . . . , x4+ℓ)
∏

1≤i<j≤4+ℓ x
2
ij

✗ The form of the denominator is dictated by the tree-level OPE of

〈O(1) . . .O(4)L(5) . . .L(4 + ℓ)〉(0) ∼ R(1, 2, 3, 4) (x2
12x

2
13x

2
14x

2
23x

2
24x

2
34) f

(ℓ)(x)

✗ The numerator P (ℓ) is a homogeneous polynomial in x2
ij of conformal weight −(ℓ− 1) at

each point, invariant under S4+ℓ permutations of xi.

✗ Examples at 1 and 2 loops:

P (1)(x1, . . . , x5) = 1 , P (2)(x1, . . . , x6) =
1

48

∑

σ∈S6

x2
σ(1)σ(2)x

2
σ(3)σ(4)x

2
σ(5)σ(6)

✔ Loop corrections in all SU(4) channels given by single function F (ℓ): partial non-renormalization
(Eden&Petkou&ES)
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Three-loop correlator

The 3-loop 4-point correlator has so far resisted all attempts to be calculated from Feynman
graphs. Here we show how to do it by just drawing pictures!

✔ A graph-theoretical problem: How to construct permutation invariant numerators?

✔ P graphs at 3 loops:

1111 2222

3
33 3 4

44 4

555 5

6

66 6

7
7

7 7

(a) (b) (c) (d)

✔ f graphs at 3 loops:

1

1

1

1

222

2

3

3

3

3
4

4

4

4

5

5

55

6

6

6

6

7

7
7

7

(a) (b) (c) (d)
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Three-loop correlator II

✔ We found 4 permutation-symmetric classes of graphs, but only graph (b) is planar, in the sense
of the tree-level correlator

G
(0)
4+ℓ;ℓ(1, . . . , 4 + ℓ) ∼ I4+ℓ × f(ℓ)(x1, . . . , x4+ℓ)

It is also planar in the sense of the 4-gluon amplitude, after restricting to the light cone

✔ Choose 4 external and 3 internal (integration) points:

(a) (b) (c) (d) (e)

✔ Finally, add the prefactor in

[F (3)]integrand =
x2
12x

2
13x

2
14x

2
23x

2
24x

2
34

3! (4π2)3
× f(3)(x1, . . . , x7)

These steps break the permutation symmetry of the integrand.
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Three-loop correlator III

We find two types of 4-point 3-loop integrals:

✔ Those which survive in the light-cone (or on-shell) limit x2
12 = x2

23 = x2
34 = x2

41 = 0:

2 4

1

3

5 6

7

2

4

1 3

5 6 7

1 3

2

4

5

6 7

T (1, 3; 2, 4) L(1, 3; 2, 4) g × h(1, 3; 2, 4)

T and L are dual to the “tennis court" and “ladder" diagrams in the on-shell 4-gluon amplitude

✔ Those which vanish in the light-cone limit (thus not seen in the 4-gluon amplitude):

3

4

1

2

5 6

7

1

6

5 7

2

3

4

E(1; 2, 4; 3) H(1, 2; 3, 4)

These integrals are new. They are conformal, hence depend on two cross-ratio variables. Who
can tell what the functions (symbols) look like? Are they maximally transcendental?
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Fixing the coefficients

✔ We found the general form of the ℓ−loop integrand

f(ℓ)(xi) =

nr
∑

α=1

cα
P

(ℓ)
α (xi)

∏

1≤i<j≤4+ℓ x
2
ij

where the sum goes over all permutation invariant topologies. How to fix the coefficients cα?

✔ Softening of the singularity of lnG4 in the light-cone limit x2
i,i+1 → 0 (u, v → 0):

lnG4 ∼ ln
(

1 + 2
∑

ℓ≥1

aℓF (ℓ)(xi)
)

=
(

−
1

4
a+

1

8
a2ζ2

)

lnu ln v +
∑

ℓ≥2

b(ℓ)
[

(a lnu)ℓ + (a ln v)ℓ
]

+ . . .

✔ Example at 2 loops:

lnG4 → a2
(

F(2) − (F(1))2
)

→ a2
∫

d4x5d
4x6

x2
13x

2
24

x2
15x

2
25x

2
35x

2
45x

2
16x

2
26x

2
36x

2
46x

2
56

× [(c(2) − 2)x2
13x

2
24x

2
56 + c(2)x2

13(x
2
25x

2
46 + x2

45x
2
26) + c(2)x2

24(x
2
15x

2
36 + x2

35x
2
16)]

Divergences come from integration over x5 (or x6) approaching a light-like edge, e.g., [x1, x2]:

xµ
5 → (1− α)xµ

1 + αxµ
2 ⇒ x2

i5 → (1− α)x2
1i + αx2

2i

✔ Requiring that the numerator vanish in this limit fixes c(2) = 1
✗ This criterion fixes all coefficients cα in the planar sector
✗ Checked to 6 loops, see also Spradlin et al up to 7 loops for the amplitude
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Four-loop correlator (planar)

We can play the same game at higher loops. At four loops we find

✔ 3 planar numerator topologies P (4)

1

1

1

2

2

2
3 3

3

4

4
4

5

5

5

6

6

6

7

7

7

8

8
8

PA PB PC

✔ and the corresponding permutation invariant integrands f(4)

1 11

2
2

2

3

3

3

4

4

4

5

5

5
6

6
6

7
7

7

8

8

8

fA fB fC

✔ The light-cone limit fixes cA = cB = −cC = 1, exactly as in the amplitude.
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Five loops (planar)

✔ We find only 7 planar f−graphs:

✔ All coefficients are fixed by the log singularity criterion.
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Six loops (planar)

✔ 23 rung-rule six-loop f−graphs

1 2 3 4 5

6 7 8 f
(6)
9

10

11 12 13 14 15

16 17 18 19 20

21 22 23
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Six loops (planar) II

✔ 13 potential non-rung-rule six-loop f−graphs

24 25 26 27 28

29 30 31 32 33

34 35 36

✔ In fact, only f
(6)
28 , f

(6)
29 and f

(6)
31 contribute.

✔ All coefficients are fixed by the log singularity criterion.
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Konishi anomalous dimension

✔ OPE of half-BPS operators

O(x1, y1)O(x2, y2) = cI
y412
x4
12

I+ cK(a)
y412

(x2
12)

1−γK/2
K(x2) + cO

y212
x2
12

O20′ (x2, y2) + (84+ 105+ 175)

with the unprotected Konishi operator K = tr
(

ΦIΦI
)

.

✔ K has the minimal scaling dimension among the unprotected operators, so it dominates the
double short-distance expansion of the log of the correlator:

ln
(

1 + 6x2
13x

2
34

∑

ℓ≥1

aℓF (ℓ)(xi)
)

u→0
v→1−→

1

2
γK(a) lnu+ ln

(

c2K(a)
)

+O(u) +O((1− v))

✔ The values of γ
(1)
K and γ

(2)
K were extracted from the explicit form of F (1) and F (2)

(Eden&Schubert&ES; Bianchi et al; Dolan&Osborn)

✔ We propose a new method which bypasses the evaluation of the higher-loop 4-point integrals in

F (ℓ). Instead, we need to compute only standard two-point propagator type integrals.
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Konishi anomalous dimension II

✔ Idea of the method:

✗ At one loop, in the double coincidence Euclidean limit x2
12 = x2

34 = δ → 0 we have

F̂ (1) = lim
x12,x34→0

x4
13F

(1) = −
1

4π2
lim

x12,x34→0

∫

x4
13 d4x5

x2
15x

2
25x

2
35x

2
45

=
1

4
ln δ −

1

2
+ . . .

✗ Different regulator: identify the points in the 4-point integral and regularize dimensionally:

F̂
(1)
ǫ = −

µ2ǫ

4π2

∫

x4
13 d4−2ǫx5

x4
15x

4
35

= (x2
13/µ

2)−ǫ

(

1

2ǫ
+

1

2
+O(ǫ2)

)

✗ Both singular limits give the same value for

γ
(1)
K = 12

d

d ln δ
F̂ (1) = 6

d

d lnµ2
F̂

(1)
ǫ = 3

✔ At higher loops the log of the correlator always has a simple pole, e.g., at two loops

lnG4 ∼ F̂
(2)
ǫ − 3 (F̂

(1)
ǫ )2 = (x2

13/µ
2)−2ǫ

(

−
1

4ǫ
−

3

4
+O(ǫ)

)

✔ Two-point integrals of propagator type can be computed by standard methods up to five loops ⇒
Full agreement with integrability (Bajnik&Janik, Arutyunov&Frolov, Gromov&Kazakov&Vieira).
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Conclusions

✔ Using only known basic properties of the four-point correlator of N = 4 stress-tensor multiplets,
we unveiled a hidden, highly symmetric structure.

✔ This structure allows to find the off-shell integrand of G4 at any loop level.

✔ Two ingredients were essential for this:

✗ N = 4 SUSY. It is known that the 2-loop correlator in a generic N = 2 conformal theory
does not posses the permutation symmetry of the integrand.

✗ The number of point is 4. For n > 4 the nilpotent superconformal invariant In is not unique,

so we have to find many functions F (ℓ) and the full permutation symmetry is lost. Still, we
might be able to make some limited predictions in this case.

✔ The recently discovered triality (Alday&Eden&Korchemsky&Maldacena&ES)

lim
x2
i,i+1→0

lnGn = 2 lnAn = 2 lnWn

between correlators in the singular light-cone limit, on-shell scattering amplitudes and light-like
Wilson loops allows us to predict the integrand of the four-gluon amplitude A4. The results are
the same as in the momentum twistor approach (Arkani-Hamed et al). It would be interesting to
understand the intimate connection between the two, seemingly very different constructions.

✔ The highly predictable structure of G4 is undoubtedly related to the integrability of N = 4 SYM.
In particular, the 4-point integrals that we find should have some hidden structure, at the level of
their symbols, for example.
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