Hidden beauty of correlation functions in $\mathcal{N}=4$ SYM

Emery Sokatchev
CERN and LAPTH-Annecy

Collaboration with
Burkhard Eden, Paul Heslop, Gregory Korchemsky, Vladimir Smirnov

Outline

\checkmark Properties of the stress-tensor multiplet in $\mathcal{N}=4$ SYM
\checkmark Structure of the four-point correlation function
\checkmark Hidden permutation symmetry of the integrand
\checkmark Three, four, five, six, ... loops
\checkmark The Konishi anomalous dimension
\checkmark Conclusions

$\mathcal{N}=4$ SYM stress-tensor multiplet in analytic superspace

$\checkmark \mathcal{N}=4$ SYM stress-tensor multiplet in ordinary superspace
\times Half-BPS operator made of 6 scalars $\Phi^{I}, I=1, \ldots, 6$:

$$
\mathcal{O}_{\mathbf{2 0}}{ }^{I J}=\operatorname{tr}\left(\Phi^{I} \Phi^{J}\right)-1 / 6 \delta^{I J} \operatorname{tr}\left(\Phi^{K} \Phi^{K}\right)
$$

x Lowest-weight state of the $\mathcal{N}=4$ stress-tensor supermultiplet:

$$
\mathcal{T}\left(x, \theta^{A}, \bar{\theta}_{A}\right)=\mathcal{O}+\ldots+(\theta)^{4} \mathcal{L}_{\mathcal{N}=4}+\ldots+\left(\theta \sigma^{\mu} \bar{\theta}\right)\left(\theta \sigma^{\nu} \bar{\theta}\right) T_{\mu \nu}+\ldots
$$

$\times \mathcal{T}$ is not chiral, but depends on $\theta^{A}, \bar{\theta}_{A}(A=1,2,3,4)$ in a restricted half-BPS way
$\checkmark \mathcal{N}=4$ analytic (harmonic) superspace and half-BPS shortening (Hartwell\&Heslop\&Howe; Eden\&Ferrara\&ES):
\times Break $S U(4) \rightarrow S U(2) \times S U(2)^{\prime} \times U(1)$ with the help of auxiliary harmonic coordinates $y_{a^{\prime}}^{a}$

$$
\theta_{\alpha}^{A} \rightarrow\left(\rho_{\alpha}^{a}, \theta_{\alpha}^{a^{\prime}}\right), \quad \text { with } \rho_{\alpha}^{a}=\theta_{\alpha}^{a}+\theta_{\alpha}^{a^{\prime}} y_{a^{\prime}}^{a}
$$

x half-BPS $=$ Grassmann analyticity:

$$
\mathcal{T}=\mathcal{T}\left(x^{\dot{\alpha} \alpha}, \rho_{\alpha}^{a}, \bar{\rho}_{a^{\prime}}^{\dot{\alpha}}, y_{a^{\prime}}^{a}\right)=\mathcal{O}(x, y)+\ldots+(\rho)^{4} \mathcal{L}_{\mathcal{N}=4}(x)+\ldots+\left(\rho \sigma^{\mu} \bar{\rho}\right)\left(\rho \sigma^{\nu} \bar{\rho}\right) T_{\mu \nu}(x)+\ldots \text { Aug.2st2012-p.319 }
$$

$\mathcal{N}=4$ SYM stress-tensor multiplet in analytic superspace II

\checkmark Lowest weight state has harmonic dependence

$$
\mathcal{O}(x, y)=Y_{I} Y_{J} \mathcal{O}_{\mathbf{2} \mathbf{0}^{\prime}}^{I J}(x)=Y_{I} Y_{J} \operatorname{tr}\left(\Phi^{I} \Phi^{J}\right),
$$

where $Y^{I}(y), Y^{2}=0$ are null vectors of $S O(6)$.
\checkmark Restrict the odd expansion to the chiral sector

$$
\mathcal{T}(x, \rho, \bar{\rho}=0, y)=\mathcal{O}(x, y)+\ldots+(\rho)^{4} \mathcal{L}_{\mathcal{N}=4}(x)
$$

$\checkmark \mathcal{N}=4$ SYM action as an integral over $1 / 4$ superspace (Howe et al):

$$
S_{\mathcal{N}=4}=\int d^{4} x \mathcal{L}_{\mathcal{N}=4}(x)=\int d^{4} x \int d^{4} \rho \mathcal{T}(x, \rho, 0, y)
$$

x Supersymmetric due to the special properties of the (on-shell) stress-tensor multiplet

Correlation functions of the $\mathcal{N}=4$ stress-tensor multiplet

$\checkmark n$-point correlation function of analytic supermultiplets $\mathcal{T}(x, \rho, 0, y)$

$$
G_{n}=\langle\mathcal{T}(1) \ldots \mathcal{T}(n)\rangle=\sum_{k=0}^{n-4} \sum_{\ell=0}^{\infty} a^{\ell+k} G_{n ; k}^{(\ell)}(1, \ldots, n), \quad a=g^{2} N_{c} /\left(4 \pi^{2}\right)
$$

The ℓ-loop correction $G_{n ; k}^{(\ell)} \sim(\rho)^{4 k}$ is a homogeneous polynomial in the odd variables
\checkmark Consider the four-point case $n=4 \Rightarrow k=0$: no ρ dependence in the chiral sector. So, we can replace $\mathcal{T}(x, \rho, 0, y)$ by just the bosonic $1 / 2$-BPS operator $\mathcal{O}(x, y)$:

$$
G_{4}=\left\langle\mathcal{O}\left(x_{1}, y_{1}\right) \ldots \mathcal{O}\left(x_{4}, y_{4}\right)\right\rangle=\sum_{\ell=0}^{\infty} a^{\ell} G_{4}^{(\ell)}(1,2,3,4)
$$

\checkmark Born level (with $\left.x_{i j}^{2}=\left(x_{i}-x_{j}\right)^{2}, y_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}\right)$
$G_{4}^{(0)}(1,2,3,4)=\frac{N_{c}^{2}-1}{\left(4 \pi^{2}\right)^{4}}\left(\frac{y_{12}^{2}}{x_{12}^{2}} \frac{y_{23}^{2}}{x_{23}^{2}} \frac{y_{34}^{2}}{x_{34}^{2}} \frac{y_{41}^{2}}{x_{41}^{2}}+\frac{y_{12}^{2}}{x_{12}^{2}} \frac{y_{24}^{2}}{x_{24}^{2}} \frac{y_{34}^{2}}{x_{34}^{2}} \frac{y_{13}^{2}}{x_{13}^{2}}+\frac{y_{13}^{2}}{x_{13}^{2}} \frac{y_{23}^{2}}{x_{23}^{2}} \frac{y_{24}^{2}}{x_{24}^{2}} \frac{y_{41}^{2}}{x_{41}^{2}}\right)+$ disconnected
\checkmark Duality with super-amplitudes/Wilson loops (Alday\&Eden\&Korchemsky\&Maldacena\&ES):

$$
\lim _{x_{i, i+1}^{2} \rightarrow 0}\left(G_{n ; k} / G_{n}^{(0)}\right)=\left[\mathcal{A}_{n}^{N^{k} M H V} / \mathcal{A}_{n}^{M H V \text { tree }}\right]^{2}
$$

Correlation functions II

\checkmark Loop correction via Lagrangian insertions

$$
a \frac{d}{d a} G_{4}=\int d^{4} x_{5}\left\langle\mathcal{O}\left(x_{1}, y_{1}\right) \ldots \mathcal{O}\left(x_{4}, y_{4}\right) \mathcal{L}_{\mathcal{N}=4}\left(x_{5}\right)\right\rangle
$$

\times Repeat ℓ times: the ℓ-loop 4-point function is given by the Born-level $(4+\ell)$-point function

$$
\left.G_{4+\ell ; \ell}^{(0)}\right|_{\rho_{1}}=\ldots=\rho_{4}=0=\left\langle\mathcal{O}\left(x_{1}, y_{1}\right) \ldots \mathcal{O}\left(x_{4}, y_{4}\right) \mathcal{L}\left(x_{5}\right) \ldots \mathcal{L}\left(x_{4+\ell}\right)\right\rangle^{(0)}\left(\rho_{5}\right)^{4} \ldots\left(\rho_{4+\ell}\right)^{4} \propto a^{\ell}
$$

This is a particular component of the super-correlator of $4+\ell$ stress-tensor multiplets:

$$
\left\langle\mathcal{T}\left(\rho_{1}=0\right) \ldots \mathcal{T}\left(\rho_{4}=0\right) \mathcal{T}(5) \ldots \mathcal{T}(4+\ell)\right\rangle
$$

\checkmark Integrand of the 4-point function as a Born-level correlator of stress-tensor multiplets

$$
G_{4}^{(\ell)}(1,2,3,4)=\int d^{4} x_{5} \ldots d^{4} x_{4+\ell}\left(\frac{1}{\ell!} \int d^{4} \rho_{5} \ldots d^{4} \rho_{4+\ell} G_{4+\ell ; \ell}^{(0)}(1, \ldots, 4+\ell)\right)
$$

What do we know about this tree-level correlator?

Correlation functions III

Examples at one and two loops

$$
\begin{aligned}
& G_{5 ; 1}^{(0)}(1,2,3,4,5)=\frac{2\left(N_{c}^{2}-1\right)}{\left(4 \pi^{2}\right)^{5}} \times \mathcal{I}_{5} \times \frac{1}{\prod_{1 \leq i<j \leq 5} x_{i j}^{2}} \\
& G_{6 ; 2}^{(0)}(1,2,3,4,5,6)=\frac{2\left(N_{c}^{2}-1\right)}{\left(4 \pi^{2}\right)^{6}} \times \mathcal{I}_{6} \times \frac{\frac{1}{48} \sum_{\sigma \in S_{6}} x_{\sigma_{1} \sigma_{2}}^{2} x_{\sigma_{3} \sigma_{4}}^{2} x_{\sigma_{5} \sigma_{6}}^{2}}{\prod_{1 \leq i<j \leq 6} x_{i j}^{2}}
\end{aligned}
$$

\checkmark Essential ingredient: nilpotent n-point superconformal invariant of Grassmann degree $4(n-4)$

$$
\begin{aligned}
\left.\mathcal{I}_{n}\right|_{\rho_{1}=\ldots=\rho_{4}=0} & =\left(x_{12}^{2} x_{13}^{2} x_{14}^{2} x_{23}^{2} x_{24}^{2} x_{34}^{2}\right) \times R(1,2,3,4) \times\left(\rho_{5}\right)^{4} \ldots\left(\rho_{n}\right)^{4} \\
R(1,2,3,4) & =\frac{y_{12}^{2} y_{23}^{2} y_{34}^{2} y_{14}^{2}}{x_{12}^{2} x_{23}^{2} x_{34}^{2} x_{14}^{2}}\left(x_{13}^{2} x_{24}^{2}-x_{12}^{2} x_{34}^{2}-x_{14}^{2} x_{23}^{2}\right)+\text { similar terms }
\end{aligned}
$$

$\times \mathcal{I}_{n}$ can be constructed by using the odd part of $\operatorname{PSU}(2,2 \mid 4)$ to restore $\rho_{1}, \ldots, \rho_{4}$.
$\times \mathcal{I}_{n}$ has $S U(4)$ and conformal weights matching those of $\mathcal{O}(x, y)$
x Crucial property: $\mathcal{I}_{n}(1, \ldots, n)$ is fully permutation invariant.
\checkmark In summary: the $(4+\ell)$-point tree-level correlator has the general form

$$
G_{4+\ell ; \ell}^{(0)}(1, \ldots, 4+\ell)=\frac{2\left(N_{c}^{2}-1\right)}{\left(4 \pi^{2}\right)^{4+\ell}} \times \mathcal{I}_{4+\ell} \times f^{(\ell)}\left(x_{1}, \ldots, x_{4+\ell}\right)
$$

$f^{(\ell)}$ is a permutation invariant function of $x_{1}, \ldots, x_{4+\ell}$ with conformal weight $(+4)$ at each point.

Hidden permutation symmetry of the integrand

\checkmark We predict the form of the four-point correlator at ℓ loops:

$$
\begin{aligned}
G_{4}^{(\ell)}(1,2,3,4) & =\frac{2\left(N_{c}^{2}-1\right)}{\left(4 \pi^{2}\right)^{4}} \times R(1,2,3,4) \times F^{(\ell)} \quad \text { for } \ell \geq 1 \\
F^{(\ell)}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & =\frac{x_{12}^{2} x_{13}^{2} x_{14}^{2} x_{23}^{2} x_{24}^{2} x_{34}^{2}}{\ell!\left(4 \pi^{2}\right)^{\ell}} \int d^{4} x_{5} \ldots d^{4} x_{4+\ell} f^{(\ell)}\left(x_{1}, \ldots, x_{4+\ell}\right) \\
f^{(\ell)}\left(x_{1}, \ldots, x_{4+\ell}\right) & =\frac{P^{(\ell)}\left(x_{1}, \ldots, x_{4+\ell}\right)}{\prod_{1 \leq i<j \leq 4+\ell} x_{i j}^{2}}
\end{aligned}
$$

x The form of the denominator is dictated by the tree-level OPE of

$$
\langle\mathcal{O}(1) \ldots \mathcal{O}(4) \mathcal{L}(5) \ldots \mathcal{L}(4+\ell)\rangle^{(0)} \sim R(1,2,3,4)\left(x_{12}^{2} x_{13}^{2} x_{14}^{2} x_{23}^{2} x_{24}^{2} x_{34}^{2}\right) f^{(\ell)}(x)
$$

x The numerator $P^{(\ell)}$ is a homogeneous polynomial in $x_{i j}^{2}$ of conformal weight $-(\ell-1)$ at each point, invariant under $S_{4+\ell}$ permutations of x_{i}.
x Examples at 1 and 2 loops:

$$
P^{(1)}\left(x_{1}, \ldots, x_{5}\right)=1, \quad P^{(2)}\left(x_{1}, \ldots, x_{6}\right)=\frac{1}{48} \sum_{\sigma \in S_{6}} x_{\sigma(1) \sigma(2)}^{2} x_{\sigma(3) \sigma(4)}^{2} x_{\sigma(5) \sigma(6)}^{2}
$$

\checkmark Loop corrections in all $S U(4)$ channels given by single function $F^{(\ell)}$: partial non-renormalization (Eden\&Petkou\&ES)

Three-loop correlator

The 3-loop 4-point correlator has so far resisted all attempts to be calculated from Feynman graphs. Here we show how to do it by just drawing pictures!
\checkmark A graph-theoretical problem: How to construct permutation invariant numerators?
$\checkmark P$ graphs at 3 loops:

(a)

(b)

(c)

(d)
$\checkmark f$ graphs at 3 loops:

(a)

(b)

(c)

(d)

Three-loop correlator II

\checkmark We found 4 permutation-symmetric classes of graphs, but only graph (b) is planar, in the sense of the tree-level correlator

$$
G_{4+\ell ; \ell}^{(0)}(1, \ldots, 4+\ell) \sim \mathcal{I}_{4+\ell} \times f^{(\ell)}\left(x_{1}, \ldots, x_{4+\ell}\right)
$$

It is also planar in the sense of the 4-gluon amplitude, after restricting to the light cone
\checkmark Choose 4 external and 3 internal (integration) points:

(a)

(b)

(c)

(d)

(e)
\checkmark Finally, add the prefactor in

$$
\left[F^{(3)}\right]_{\text {integrand }}=\frac{x_{12}^{2} x_{13}^{2} x_{11}^{2} x_{23}^{2} x_{24}^{2} x_{34}^{2}}{3!\left(4 \pi^{2}\right)^{3}} \times f^{(3)}\left(x_{1}, \ldots, x_{7}\right)
$$

These steps break the permutation symmetry of the integrand.

Three-loop correlator III

We find two types of 4-point 3-loop integrals:
\checkmark Those which survive in the light-cone (or on-shell) limit $x_{12}^{2}=x_{23}^{2}=x_{34}^{2}=x_{41}^{2}=0$:

T and L are dual to the "tennis court" and "ladder" diagrams in the on-shell 4-gluon amplitude
\checkmark Those which vanish in the light-cone limit (thus not seen in the 4-gluon amplitude):

These integrals are new. They are conformal, hence depend on two cross-ratio variables. Who can tell what the functions (symbols) look like? Are they maximally transcendental?

Fixing the coefficients

\checkmark We found the general form of the ℓ-loop integrand

$$
f^{(\ell)}\left(x_{i}\right)=\sum_{\alpha=1}^{n_{r}} c_{\alpha} \frac{P_{\alpha}^{(\ell)}\left(x_{i}\right)}{\prod_{1 \leq i<j \leq 4+\ell} x_{i j}^{2}}
$$

where the sum goes over all permutation invariant topologies. How to fix the coefficients c_{α} ?
\checkmark Softening of the singularity of $\ln G_{4}$ in the light-cone limit $x_{i, i+1}^{2} \rightarrow 0(u, v \rightarrow 0)$:
$\ln G_{4} \sim \ln \left(1+2 \sum_{\ell \geq 1} a^{\ell} F^{(\ell)}\left(x_{i}\right)\right)=\left(-\frac{1}{4} a+\frac{1}{8} a^{2} \zeta_{2}\right) \ln u \ln v+\sum_{\ell \geq 2} b^{(\ell)}\left[(a \ln u)^{\ell}+(a \ln v)^{\ell}\right]+\ldots$
Example at 2 loops:

$$
\begin{aligned}
& \ln G_{4} \rightarrow a^{2}\left(\mathcal{F}^{(2)}-\left(\mathcal{F}^{(1)}\right)^{2}\right) \rightarrow a^{2} \int d^{4} x_{5} d^{4} x_{6} \frac{x_{13}^{2} x_{24}^{2}}{x_{15}^{2} x_{25}^{2} x_{35}^{2} x_{45}^{2} x_{16}^{2} x_{26}^{2} x_{36}^{2} x_{46}^{2} x_{56}^{2}} \\
& \times\left[\left(c^{(2)}-2\right) x_{13}^{2} x_{24}^{2} x_{56}^{2}+c^{(2)} x_{13}^{2}\left(x_{25}^{2} x_{46}^{2}+x_{45}^{2} x_{26}^{2}\right)+c^{(2)} x_{24}^{2}\left(x_{15}^{2} x_{36}^{2}+x_{35}^{2} x_{16}^{2}\right)\right]
\end{aligned}
$$

Divergences come from integration over $x_{5}\left(\operatorname{or} x_{6}\right)$ approaching a light-like edge, e.g., $\left[x_{1}, x_{2}\right]$:

$$
x_{5}^{\mu} \rightarrow(1-\alpha) x_{1}^{\mu}+\alpha x_{2}^{\mu} \quad \Rightarrow \quad x_{i 5}^{2} \rightarrow(1-\alpha) x_{1 i}^{2}+\alpha x_{2 i}^{2}
$$

\checkmark Requiring that the numerator vanish in this limit fixes $c^{(2)}=1$
x This criterion fixes all coefficients c_{α} in the planar sector
x Checked to 6 loops, see also Spradlin et al up to 7 loops for the amplitude

Four-loop correlator (planar)

We can play the same game at higher loops. At four loops we find
$\checkmark 3$ planar numerator topologies $P^{(4)}$

\checkmark and the corresponding permutation invariant integrands $f^{(4)}$

f_{A}

f_{B}

f_{C}
\checkmark The light-cone limit fixes $c_{A}=c_{B}=-c_{C}=1$, exactly as in the amplitude.

Five loops (planar)
\checkmark We find only 7 planar f-graphs:

\checkmark All coefficients are fixed by the log singularity criterion.

Six loops (planar)
$\checkmark 23$ rung-rule six-loop f-graphs

7

16

8

14

10

17

18

15

22

23

Six loops (planar) II
$\checkmark 13$ potential non-rung-rule six-loop f-graphs

\checkmark In fact, only $f_{28}^{(6)}, f_{29}^{(6)}$ and $f_{31}^{(6)}$ contribute.
\checkmark All coefficients are fixed by the log singularity criterion.

Konishi anomalous dimension

\checkmark OPE of half-BPS operators

$$
\mathcal{O}\left(x_{1}, y_{1}\right) \mathcal{O}\left(x_{2}, y_{2}\right)=c_{\mathbb{I}} \frac{y_{12}^{4}}{x_{12}^{4}} \mathbb{I}+c_{\mathcal{K}}(a) \frac{y_{12}^{4}}{\left(x_{12}^{2}\right)^{1-\gamma_{\mathcal{K}} / 2}} \mathcal{K}\left(x_{2}\right)+c_{\mathcal{O}} \frac{y_{12}^{2}}{x_{12}^{2}} \mathcal{O}_{\mathbf{2 0}^{\prime}}\left(x_{2}, y_{2}\right)+(\mathbf{8 4}+\mathbf{1 0 5}+\mathbf{1 7 5})
$$

with the unprotected Konishi operator $\mathcal{K}=\operatorname{tr}\left(\Phi^{I} \Phi^{I}\right)$.
$\checkmark \mathcal{K}$ has the minimal scaling dimension among the unprotected operators, so it dominates the double short-distance expansion of the log of the correlator:

$$
\ln \left(1+6 x_{13}^{2} x_{34}^{2} \sum_{\ell \geq 1} a^{\ell} F^{(\ell)}\left(x_{i}\right)\right) \xrightarrow{\substack{u \rightarrow 0 \\ v \rightarrow 0}} \frac{1}{2} \gamma_{\mathcal{K}}(a) \ln u+\ln \left(c_{\mathcal{K}}^{2}(a)\right)+O(u)+O((1-v))
$$

\checkmark The values of $\gamma_{\mathcal{K}}^{(1)}$ and $\gamma_{\mathcal{K}}^{(2)}$ were extracted from the explicit form of $F^{(1)}$ and $F^{(2)}$ (Eden\&Schubert\&ES; Bianchi et al; Dolan\&Osborn)
\checkmark We propose a new method which bypasses the evaluation of the higher-loop 4-point integrals in $F^{(\ell)}$. Instead, we need to compute only standard two-point propagator type integrals.

Konishi anomalous dimension II

\checkmark Idea of the method:
\times At one loop, in the double coincidence Euclidean limit $x_{12}^{2}=x_{34}^{2}=\delta \rightarrow 0$ we have

$$
\hat{F}^{(1)}=\lim _{x_{12}, x_{34} \rightarrow 0} x_{13}^{4} F^{(1)}=-\frac{1}{4 \pi^{2}} \lim _{x_{12}, x_{34} \rightarrow 0} \int \frac{x_{13}^{4} d^{4} x_{5}}{x_{15}^{2} x_{25}^{2} x_{35}^{2} x_{45}^{2}}=\frac{1}{4} \ln \delta-\frac{1}{2}+\ldots
$$

x Different regulator: identify the points in the 4 -point integral and regularize dimensionally:

$$
\hat{F}_{\epsilon}^{(1)}=-\frac{\mu^{2 \epsilon}}{4 \pi^{2}} \int \frac{x_{13}^{4} d^{4-2 \epsilon} x_{5}}{x_{15}^{4} x_{35}^{4}}=\left(x_{13}^{2} / \mu^{2}\right)^{-\epsilon}\left(\frac{1}{2 \epsilon}+\frac{1}{2}+O\left(\epsilon^{2}\right)\right)
$$

x Both singular limits give the same value for

$$
\gamma_{\mathcal{K}}^{(1)}=12 \frac{d}{d \ln \delta} \hat{F}^{(1)}=6 \frac{d}{d \ln \mu^{2}} \hat{F}_{\epsilon}^{(1)}=3
$$

\checkmark At higher loops the log of the correlator always has a simple pole, e.g., at two loops

$$
\ln G_{4} \sim \hat{F}_{\epsilon}^{(2)}-3\left(\hat{F}_{\epsilon}^{(1)}\right)^{2}=\left(x_{13}^{2} / \mu^{2}\right)^{-2 \epsilon}\left(-\frac{1}{4 \epsilon}-\frac{3}{4}+O(\epsilon)\right)
$$

\checkmark Two-point integrals of propagator type can be computed by standard methods up to five loops \Rightarrow Full agreement with integrability (Bajnik\&Janik, Arutyunov\&Frolov, Gromov\&Kazakov\&Vieira).

Conclusions

\checkmark Using only known basic properties of the four-point correlator of $\mathcal{N}=4$ stress-tensor multiplets, we unveiled a hidden, highly symmetric structure.
\checkmark This structure allows to find the off-shell integrand of G_{4} at any loop level.
\checkmark Two ingredients were essential for this:
$x \mathcal{N}=4$ SUSY. It is known that the 2 -loop correlator in a generic $\mathcal{N}=2$ conformal theory does not posses the permutation symmetry of the integrand.
x The number of point is 4 . For $n>4$ the nilpotent superconformal invariant \mathcal{I}_{n} is not unique, so we have to find many functions $F^{(\ell)}$ and the full permutation symmetry is lost. Still, we might be able to make some limited predictions in this case.
\checkmark The recently discovered triality (Alday\&Eden\&Korchemsky\&Maldacena\&ES)

$$
\lim _{x_{i, i+1}^{2} \rightarrow 0} \ln G_{n}=2 \ln \mathcal{A}_{n}=2 \ln W_{n}
$$

between correlators in the singular light-cone limit, on-shell scattering amplitudes and light-like Wilson loops allows us to predict the integrand of the four-gluon amplitude \mathcal{A}_{4}. The results are the same as in the momentum twistor approach (Arkani-Hamed et al). It would be interesting to understand the intimate connection between the two, seemingly very different constructions.
\checkmark The highly predictable structure of G_{4} is undoubtedly related to the integrability of $\mathcal{N}=4$ SYM. In particular, the 4-point integrals that we find should have some hidden structure, at the level of their symbols, for example.

