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• All the on-shell states in N = 4 SYM can be combined into an on-shell superfield,

Φ = G+ + ηAΓA +
1

2!
ηAηBSAB +

1

3!
εABCDη

AηBηC Γ̄D +
1

4!
εABCDη

AηBηCηDG−,

which depends on the Grassmann variable ηA, and a null momenta pαα̇ = λαλ̄α̇.

• All color-ordered amplitudes are packaged into a superamplitude A({λi, λ̄i, ηi}); it
can be classified according to the Grassmann degree 4k + 8,

An = An,MHV + An,NMHV + · · · + An,MHV =
δ4(
∑

i λiλ̄i)δ
0|8(
∑

i λiηi)

〈12〉〈23〉 · · · 〈n1〉

n−3
∑

k=0

An,k.

where we strip off the MHV tree prefactor; An,k denotes the NkMHV amplitude.

• N = 4 SYM is a superconformal field theory. By introducing a deformation of the
free algebra, the tree-level S-matrix is invariant under this psu(2, 2|4) symmetry:
{qα

A, q̄
A
α̇ , pαα̇,mαβ , m̄α̇β̇, s

A
α , s̄

α̇
A, kαα̇, d, r

A
B} [ Bargheer Beisert Galleas

Loebbert McLoughlin 2009].
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xαα̇
i − xαα̇

i−1 = λα
i λ̄

α̇
i , θαA

i − θαA
i−1 = λα

i η
A
i .
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• In the planar limit, a dual conformal symmetry has been observed at both
weak [ Drummond Henn

Smirnov Sokatchev 2006] and strong couplings [ Alday
Maldacena 2007]. The symmetry has been

generalized to a dual superconformal symmetry [ Drummond Henn
Korchemsky Sokatchev 2008]. The tree-level

S-matrix is invariant under the dual psu(2, 2|4) symmetry.

• The four-gluon amplitude has an all-loop, exponentiated form [ Anastasiou Bern
Dixon Kosower 2003],

A4 = exp[−Γcusp log
−s− iǫ

µ2
log

−t

µ2
+ d(log

−s− iǫ

µ2
+ log

−t

µ2
) + const].

A general ansatz to remove all infrared and collinear divergences [ Bern Dixon
Smirnov 2005]:

ABDS
n = 1 +

∞
∑

ℓ=1

g2ℓA(ℓ)
n (ǫ) = exp

[

∞
∑

ℓ=1

g2ℓ
(

Γ(ℓ)
cusp(ǫ)A

(1)
n,0(ℓǫ) + C(ℓ) + E(ℓ)

n (ǫ)
)

]

.

• Loop amplitudes are not invariant under the dual conformal symmetry, but they
satisfy an anomalous Ward identity [ Drummond Henn

Korchemsky Sokatchev 2007]. BDS ansatz is exact for n =
4, 5, since it is the only solution. In general, a finite remainder function is allowed,

which depends on 3(n− 5) cross-ratios, e.g. u1 =
x2
13x2

46

x2
14x2

36
etc. for n = 6.
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• There is strong evidence for a duality between MHV amplitude and a null polygonal
Wilson loop in dual spacetime [ Alday

Maldacena 2007] [Drummond Korchemsky
Sokatchev 2007 ] [Brandhuber Heslop

Travaglini 2007 ], tested up to
two-loop six-point [ Drummond Henn

Korchemsky Sokatchev 2007] [ Bern Dixon Kosower Roiban
Spradlin Vergu Volovich 2008].

• The original superconformal symmetry of the amplitude are mapped to the dual
symmetry of the Wilson loop by T-dualities [ Berkovits

Maldacena 2008] [ Beisert Ricci
Tseytlin Wolf 2008]. Their closure is

an infinite-dimensional Yangian symmetry, y[psu(2, 2|4)] [ Drummond Henn
Plefka 2009 ].

• A generalized duality between the superamplitude and a supersymmetric Wilson
loop has been derived at the integrand level [ Mason

Skinner 2010][Caron-Huot
2010 ], although a rigorous

UV regularization for the super-loop has not been carried out [Belitzky Korchemsky
Sokatchev 2011 ],

An(λi, λ̄i, ηi) = Wn(xi, θi)(1 + O(ǫ)), Wn =
1

Nc

〈TrPe−
∮

A(xi,θi)〉.

• The chiral super Wilson loop obscures one chiral half of superconformal symme-
tries. As a natural generalization, Wilson loops in non-chiral N = 4 superspace
generally manifest the full symmetry [Caron-Huot

2011 ] [ Beisert
Vergu 2012] [ Beisert SH

Schwab Vergu 2012].
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• We define BDS-subtracted S-matrix: An,k = ABDS
n × Rn,k, which is a finite object

depending on dual conformal cross-ratios and the so-called R-invariants. It has
simple collinear limits, and by definition, R4,0 = R5,0 = R5,1/R

tree
5,1 = 1.

• Such invariants can be constructed using twistors of the dual (super)space [Hodges
2009 ],

momentum twistor : Zi = (Za
i , χ

A
i ) = (λα

i , x
αα̇
i λiα, θ

αA
i λiα);

four-bracket : 〈ijkl〉 = εabcdZ
a
i Z

b
jZ

c
kZ

d
l , e.g. u1 =

〈1234〉〈4561〉

〈1245〉〈3461〉
;

R-invariant : [i j k lm] =
δ0|4(χA

i 〈jklm〉 + cyclic)
〈ijkl〉〈jklm〉〈klmi〉〈lmij〉〈mijk〉

.

They form the fundamental representation of the dual superconformal algebra,

Qa
A = (Qα

A, S̄
α̇
A) =

n
∑

i=1

Za
i

∂

∂χA
i

, Q̄A
a = (SA

α , Q̄
A
α̇ = s̄A

α̇ ) =

n
∑

i=1

χA
i

∂

∂Za
i

,

Ka
b = (Pαα̇,Kαα̇,Mαβ , M̄α̇β̇,D) =

n
∑

i=1

Za
i

∂

∂Zb
i

, RA
B = RA

B =

n
∑

i=1

χA
i

∂

∂χB
i

.
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n

1

2

3

4. . .

NkMHV

n

1
2

3

4
. . .

NkMHV

n

1

2

3

4. . .

Nk+1MHV

n+1

n

NMHV

n+1

Q̄ = a
∫

− × ) + cyclic.d
2|3

Zn+1 (

. . .

tree

• The BDS-subtracted S-matrix is not invariant under the naive Q̄A
a . We propose an

all-loop equation for the “anomaly” as collinear integral (see also [ Bullimore
Skinner 2011]),

Q̄A
aRn,k = Γcusp resǫ=0

∫ τ=∞

τ=0

(

d2|3Zn+1

)A

a

[

Rn+1,k+1 −Rn,kR
tree
n+1,1

]

+ cyclic,

where the cusp anomalous dimension is known Γcusp = g2 − π2

3 g
4 + 11π4

45 g6 + . . . .

• The RHS is an 1d integral over τ ; one then computes the residue at ǫ→ 0,

Zn+1 = Zn − ǫ(Zn−1 −
〈n−1n23〉

〈n123〉
τZ1) + O(ǫ2) ,

resǫ=0

∫ τ=∞

τ=0

(d2|3Zn+1)
A
a =

〈n−1n23〉

〈n123〉
(n−1n 1)a

∮

ǫ=0

ǫdǫ

∫ ∞

0

dτ (d0|3χn+1)
A .
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• Using the discrete parity symmetry, we derive an equivalent equation for level-one

generator, Q(1)a
A = (sα

A, . . .) = 1
2

∑

i,j sgn(j − i)
(

Za
i

∂
∂Zb

i

Zb
j

∂
∂χA

j

− Za
i

∂
∂χB

i

χB
j

∂
∂χA

j

)

,

Q
(1)a
A Rn,k = ΓcuspZ

a
n lim

ǫ→0

∫ ∞

0

dτ

τ
(dηn+1)A



Rn+1,k −
∑

i,j

Ci,j

∂Rn,k

∂χj



+ cyclic.

• The equations essentially amount to Yangian invariance of the S-matrix. RHS are
not anomalies: they should be interpreted as quantum corrections of (naive) sym-
metry generators acting on the S-matrix [ Bargheer Beisert Galleas

Loebbert McLoughlin 2009] [ Sever
Vieira 2009] [ Beisert Henn

McLoughlin Plefka 2010].

• We claim that the equations are valid for any value of the coupling. When ex-
panded in powers of Γcusp, they recursively give derivatives of all-loop amplitudes.

• The differential equations are nice: both sides are finite, regulator independent,
and manifest the transcendentality of loop amplitudes. They are powerful: together
with collinear limits, the solutions uniquely determine the full S-matrix.
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• The way Q̄ acts on a Wilson loop is by inserting a fermion operator on the edges,
which was calculated in explicit examples using Feynman diagrams [Caron-Huot

2011 ]

Q̄A
α̇ 〈Wn〉 ∝ g2

∮

dxα̇α〈(ψ
A + FθA + . . .)αWn〉.

• The key new ingredient: the fermion insertion is the unique excitation with given
quantum numbers. The Operator Product Expansion [ Alday Gaiotto Maldacena

Sever Vieira 2010 ] allows us to
extract the excited n-gon Wilson loop from an (n+1)-gon in collinear limit,

1

ABDS
n

Q̄〈Wn,k〉 =
g2

F (g2)
resǫ=0

∫ τ=∞

τ=0

d2|3Zn+1Rn+1,k+1(τ, ǫ) + cyclic.

Given that BDS ansatz is one-loop exact, we obtain the Q̄ of BDS,

〈Wn,k〉Q̄
1

ABDS
n

= −ΓcuspRn,k resǫ=0

∫ τ=∞

τ=0

d2|3Zn+1R
tree
n+1,1(τ, ǫ) + cyclic.

• Both τ integrals diverge, but the sum must be finite, so we have g2/F (g2) = Γcusp.
A crucial test of our derivation is to check the dispersion relation of the insertion.
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→
n

n−1 n−2 . . .

1 2 . . .

n+1

n−1
n−2 . . .

1
2 . . .

n

ψ
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• The fermion operators are labeled by a momentum, p, conjugate to its position
along the edge. We want to understand the log ǫ term in momentum space,

lim
ǫ→0

log

(∫ ∞

0

dτ τ i p
2 d0|3χn+1Rn+1,1

)

→ log ǫ× γ(p) + C(p),

where the dispersion relation γ(p) has to match that of a fermion excitation of the
null edge, known for any values of the coupling thanks to integrability [ Basso

2010 ].

• We have derived R6,1 up to two loops, which can be used to give γ(p) to order Γ2
cusp,

γ(p) = Γcusp (ψ+ − ψ(1)) −
Γ2

cusp

8

(

ψ′′
+ + 4ψ′

−(ψ− −
1

p
) + 6ζ(3)

)

.

This agrees precisely with [ Basso
2010 ], and it also confirms the prefactor must be Γcusp.

• For RHS of the equations, we only need the total-τ integral (zero-momentum).
The cancelation of log ǫ divergences in that case is guaranteed by the Goldstone
theorem: the fermion with p = 0 is a Goldstone fermion, thus γ(0) = 0.
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• The simplest case, MHV remainder function, Rn,0, is independent of Grassmann
variables. We can obtain all the derivatives from its Q̄,

∂

∂χ1
i

Q̄1
aRn,0 =

∂

∂Za
i

Rn,0,

which uniquely determine Rn,0, up to a constant (fixed by collinear limit). From the
RHS, we can already deduce its total derivative must be of the form

dRn,0 =
∑

i,j

Fi,jd log〈i−1 i i+1 j〉,

which holds to all loops. This proves the conjecture of [Caron-Huot
2011 ].

• Remarkably, the solution to Q̄ equation is also unique for NMHV amplitude, up to
a linear combination of R-invariants, which can be fixed by collinear limits.

• We need both equations beyond NMHV. For all-loop NkMHV, the solutions are
unique, up to invariants under naive Q, Q̄ and Q(1). It is known [ Korchemsky

Sokatchev 2010][Drummond
Ferro 2010]

that all such invariants are given by the Grassmannian formula [Arkani-Hamed Cachazo
Cheung Kaplan 2009 ].



The S-matrix from the symmetry: jumpstarting amplitudes I

22. August, 2012, Song He: Yangian symmetry of scattering amplitudes in planar N = 4 Super Yang-Mills 14 / 21

• From the collinear integral of R1-loop
7,1 , one can easily compute the derivative of two-

loop MHV hexagon, reproducing the formula in [Goncharov Spradlin
Vergu Volovich 2010] [Del Duca Duhr

Smirnov 2010]

R2-loop
6,0 = 4

3
∑

i=1

(

L+
4 (ui) −

1

2
Li4(1 −

1

ui

)

)

−
1

2

(

3
∑

i=1

Li2(1 −
1

ui

)

)2

+
1

6
J4+

π2

3
J2+

π4

18
.

Higher-point amplitudes are similar; we found the symbol agrees with [Caron-Huot
2011 ].

• We derived the two-loop NMHV hexagon, and found agreement with results in
[Kosower Roiban

Vergu 2011] and [Dixon Drummond
Henn 2011]. Similarly we computed the symbol for the heptagon.

• An ansatz was proposed for S[R3-loop
6,0 ] [Dixon Drummond

Henn 2011], based on physical considera-
tions, e.g. OPE constraints, and assumptions on possible forms of the symbol. We
confirmed their assumptions, and fixed the two undetermined parameters,

S[R3-loop
6,0 ] =

(

S[X] −
3

8
S[f1] +

7

32
S[f2]

)

(u1, u2, u3).
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• Amplitudes/Wilson loops simplify significantly for the restricted kinematics when
the 2n external momenta/edges are embedded in a two-dimensional sub-
space [ Alday

Maldacena 2009][Del Duca Duhr
Smirnov 2009] [ Heslop

Khoze 2010]. It is natural to do the reduction supersymmetri-
cally, and the symmetry factorizes PSU(2, 2|4) → SL(2|2)even × SL(2|2)odd:

Z2i−1 = (λ1
2i−1, 0, λ

3
2i−1, 0, χ

1
2i−1, 0, χ

3
2i−1, 0), Z2i = (0, λ2

2i, 0, λ
4
2i, 0, χ

2
2i, 0, χ

4
2i).

Four-brackets factorize, 〈2i−1 2j−1 2k 2l〉 = 〈2i−1 2j−1〉 [2k 2l]; even and odd
cross-ratios are built from 1d distances, ua,b,c,d = 〈a b〉 〈c d〉

〈a c〉 〈b d〉 .

• Superamplitudes will be built from “mini” R-invariants in even and odd sector,

(a b c) =
δ0|2(〈a b〉χc + 〈b c〉χa + 〈c a〉χb)

〈a b〉 〈b c〉 〈c a〉
,

Tree amplitudes are trivial combinations of R-invariants, which, e.g. for N2MHV,
are products of (a b c d) := −(a b c)(a c d). Loop amplitudes are combinations with
coefficients being pure, transcendental functions of conformal cross-ratios.
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• The Q̄ equation in restricted kinematics is derived by considering the overlap of a
2n-gon with the collinear limit of (2n+2)-gon. In the even sector, we have,

Q̄A
a R2n,k = Γcusp

∫

d1|2λ2n+1

∫

d0|1λ2n+2(R2n+2,k+1 −RtreeR2n,k) + cyclic,

where we take λ2n+2 = λ2n + ǫλ2 supersymmetrically, and explicitly the measure is

∫

d1|2λ2n+1

∫

d0|1λ2n+2 = λ2n,a lim
ǫ→0

∫ λ1

λ2n−1

〈λ2n+1dλ2n+1〉

∫

d2χ2n+1(dχ2n+2)
A.

• From a reasonably nice form of N2MHV tree, we applied the equation twice and
derived the 2n-point two-loop MHV, which agrees with [ Heslop

Khoze 2010] [ Gaiotto Maldacena
Sever Vieira 2010 ].

• A nice byproduct from the computation is the one-loop NMHV, now written in a
basis of R-invariants, in terms of functions of cross-ratios, e.g. the octagon

R8,1 =
(

(3 5 7)[2 4 6]f1
8,1(u1, u2) + 7 cyclic

)

+ R
tree
8,1 f

2
8,1(u1, u2);

f
1,1-loop
8,1 = log(1−u1) log(1−u2), f

2,1-loop
8,1 = log u1(1−u1) log u2(1−u2).
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• For k+ℓ=3, i.e. one-loop N2MHV, two-loop NMHV and three-loop MHV, new struc-
tures, such as combinations x−y, 1−x−y, appear. We computed the amplitudes
explicitly using the equations. The result is highly non-trivial and interesting.

• The one-loop N2MHV octagon can be put into a nice form (ui := ui,i+2,i+4,i+6)

R8,2 = R
tree
8,2

u1u2

1 − u1 − u2

(

f8,2(u1, u2) + f8,2(u2, u1)
)

+ (3 cyclic),

where Rtree
8,2 = (1 3 5 7)[2 4 6 8], f8,2(x, y) = Li2(x) + 1

2
log x log

(

1−x

y

)

− π
2

8
.

• The same pattern also appears in higher-point N2MHV, e.g. the decagon reads,

R10,2 = (1357)[26810]f1
10,2(u1, u6) + (4 cyclic) + [(1357)[46810]f1

10,2(u1, u4)

+ (1357)[2468]f2
10,2(u1, u2) + 2(1357)[2410][468]f8,2(1−u1, u10) + (9 cyclic)] + . . . ,

where . . . denotes remaining log log terms with pure R invariants as coefficients;

f
1
10,2(x, y) = 2

xy

1 − x − y

(

f8,2(1 − x, 1 − y) − f8,2(y, x)
)

,

f
2
10,2(x, y) = 2

y(1 − x)

x − y
f8,2(y, 1 − x) − 2

x(1 − y)

x − y
f8,2(x, 1 − y).
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• We determined the two-loop NMHV octagon, up to one parameter corresponding
to adding a multiple of the one-loop amplitude, in terms of the two functions:

f
1,2-loop
8,1 = Li2,2(x,

1−y

x
) + Li2,2(1−x,

y

1−x
) − Li2,2(x,

1

x
) − Li2,2(1, y) + C(x, y) + (x ↔ y),

where the “classical part” C(x, y) involves only polylogarithms of degree 3 or less:

C(x, y) = −

(

Li3(
xy

(1−x)(1−y)
) − Li3(

x

1−y
) − Li3(

y

1−x
) + Li3(x) + Li3(y) + (Li2(

y

1−x
) − Li2(y)) log

1−y

x

)

log y(1−x)

+



4Li3(y) + 2Li3(1−y) + Li2(y) log
x2(1−y)

y
− 2ζ(3)



 log(1−x)

+

( 1

2
log xy log(1−x)(1−y) −

1

2
log x log y

)

log(1−x) log(1−y)

+
1

2
Li2(y) log

2
(1−x) +

3

2
Li2(x)Li2(y) +

5

8
log

2
(1−x) log

2
(1−y),

and a simpler function f2,2-loop
8,1 = g(x, y) + (x↔ 1−x) + (y ↔ 1−y) + (x↔ y):

g(x, y) =

(

6Li3(1−x) − Li2(1−x) log
1−x

x
+ log

2
x log 1−x

)

log y +

(

1

8
log x +

3

4
log 1−x

)

log x log
2

y

−
1

8
log x log 1−x log y log 1−y − 3ζ(3) log x +

π2

6

(

1

4
log x log

x

(1−x)
− log x log y

)

+
π4

160
.
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• The function f1
8,1 is basically a component amplitude, f1

8,1 = 〈13〉[68]R8,1|χ1χ3χ6χ8 .
We consider small x expansion, f1

8,1(v = x
1−x

, w = y
1−y

) =
∑∞

n=1 fn(w)vn:

f
2-loop
n = log vf

2-loop
n |log v + [

wn

n2
(2 Li2(−w)+ log w log(1+w))]reg + [

2wn

n3
log

1+w

w
]reg

+
4(−)n

n3
log(1+w) +

(−)n

n
(
1

n
−2S1(n)) log w log(1+w) −

(−)n

n2
Li2(−w)

+
4(−)n

n
(S1(n)−

1

n
) log(1+w)2 −

(−)n

n
(6 Li3(−w)− log w Li2(−w)+π

2 log(1+w)),

f
2-loop
n |log v = [

wn

n2
log

w

1+w
]reg +

(−1)n

n
log2(1+w) −

(−1)n

n2
log(1+w),

where the log v part agrees with OPE leading-order predictions. The most interest-
ing part is in terms which mix v with w, while the remaining terms are factorized.

• The result becomes remarkably simple after doing a Fourier (Mellin) transform,

f(p, q) =

∫ 1

0

dv

v

∫ 1

0

dw

w
f(v, w)vi

p
2wi

q
2 ;

f1,2-loop
8,1 (p, q) =

π

p sinh(πp
2 )

π

q sinh(πq
2 )

coth(πp
2 ) − coth(πq

2 )

p− q
+ factorized.
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• We also derived the two-loop NMHV decagon, whose non-trivial, mixed part is
essentially a sum of octagons. Based on this, we obtained the complete function
for the three-loop MHV octagon, up to two constants multiplying two-loop MHV
and NMHV octagons. All other beyond-the-symbol ambiguities were fixed.

• The result, in terms of functions like Li3,3, is relatively involved, but the small x
expansion is compact; in particular the mixed part is similar to two-loop NMHV,

f 3-loop
n =

n
∑

i=1

[

ciw
i(log v log

w

1+w
+ 2 Li2(−w) + logw log(1+w)) + c′iw

i log
w

1+w

]

reg

+
n
∑

i=1

[ ci
wi

(log v log(1+w) + 2 Li2(−w) + logw log(1+w)) +
c′i
wi

log(1+w)
]

reg

+ factorized .

• We expect it to have a nice Mellin representation, and possibly also for higher
points. We have a rich set of data: non-trivial but simple, suggesting some under-
lying picture. How to understand such nice structures from integrability?
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• The all-loop S-matrix in planar N = 4 SYM is invariant under a suitably deformed
Yangian symmetry at the quantum level, and is fully determined by it.

• We derived new, elegant equations based on the quantum-corrected symmetry,
and tested them extensively against e.g. results of multi-loop amplitudes and OPE.

• The equations have provided new data for the S-matrix of planar N = 4 SYM; we
hope that they will provide more insights into its integrability.

• Open questions

• OPE interpretations of the result, especially how to understand multi-particle
states? Relations to the spin chain picture in [Sever Wang

Vieira 2012 ]?

• Understanding the equations at strong coupling? Relations to TBA, Y-system?

• Beyond amplitudes in N = 4 SYM: non-chiral Wilson loops/correlation functions
in the light-cone limit? the S-matrix of super Chern-Simons from symmetries?
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