Yangian symmetry of scattering amplitudes in planar $\mathcal{N}=4$ Super Yang-Mills

Song He
Max-Planck-Institut für Gravitationsphysik (AEI), Potsdam
with Simon Caron-Huot, 1112.1060 and work in progress.

IGST 2012, ETH Zürich
August 22, 2012

Plan of the talk

- The symmetry of the S-matrix in planar $\mathcal{N}=4$ SYM
- The S-matrix from the symmetry
- A new proposal
- Outline of a derivation
- Jumpstarting amplitudes I
- Jumpstarting amplitudes II
- Restricted kinematics
- One-loop N^{2} MHV
- Two-loop NMHV
- Three-loop MHV
- Summary and outlook

The symmetry of the S-matrix in planar $\mathcal{N}=4$ SYM

- All the on-shell states in $\mathcal{N}=4 \mathrm{SYM}$ can be combined into an on-shell superfield, $\Phi=G^{+}+\eta^{A} \Gamma_{A}+\frac{1}{2!} \eta^{A} \eta^{B} S_{A B}+\frac{1}{3!} \varepsilon_{A B C D} \eta^{A} \eta^{B} \eta^{C} \bar{\Gamma}^{D}+\frac{1}{4!} \varepsilon_{A B C D} \eta^{A} \eta^{B} \eta^{C} \eta^{D} G^{-}$, which depends on the Grassmann variable η^{A}, and a null momenta $p_{\alpha \dot{\alpha}}=\lambda_{\alpha} \bar{\lambda}_{\dot{\alpha}}$.
- All color-ordered amplitudes are packaged into a superamplitude $\mathcal{A}\left(\left\{\lambda_{i}, \bar{\lambda}_{i}, \eta_{i}\right\}\right)$; it can be classified according to the Grassmann degree $4 k+8$,

$$
\mathcal{A}_{n}=\mathcal{A}_{n, \mathrm{MHV}}+\mathcal{A}_{n, \mathrm{NMHV}}+\cdots+\mathcal{A}_{n, \overline{\mathrm{MHV}}}=\frac{\delta^{4}\left(\sum_{i} \lambda_{i} \bar{\lambda}_{i}\right) \delta^{0 \mid 8}\left(\sum_{i} \lambda_{i} \eta_{i}\right)}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle} \sum_{k=0}^{n-3} A_{n, k} .
$$

where we strip off the MHV tree prefactor; $A_{n, k}$ denotes the $\mathrm{N}^{k} \mathrm{MHV}$ amplitude.

- $\mathcal{N}=4$ SYM is a superconformal field theory. By introducing a deformation of the free algebra, the tree-level S-matrix is invariant under this $\mathfrak{p s u}(2,2 \mid 4)$ symmetry:

The symmetry of the S-matrix in planar $\mathcal{N}=4 \mathrm{SYM}$

Yangian symmetry of the S-matrix in planar $\mathcal{N}=4$ SYM

- In the planar limit, a dual conformal symmetry has been observed at both weak [smirnum Sonatithen 2006] and strong couplings [maldacena 2007]. The symmetry has been generalized to a dual superconformal symmetry [Korchemsky ${ }^{\text {Drum }}$ Sokatchnev 2008]. The tree-level S-matrix is invariant under the dual $\mathfrak{p s u}(2,2 \mid 4)$ symmetry.
- The four-gluon amplitude has an all-loop, exponentiated form [DAnastasiou Bern ${ }^{\text {Dixon Kosower 2003 }}$],

$$
A_{4}=\exp \left[-\Gamma_{\mathrm{cusp}} \log \frac{-s-i \epsilon}{\mu^{2}} \log \frac{-t}{\mu^{2}}+d\left(\log \frac{-s-i \epsilon}{\mu^{2}}+\log \frac{-t}{\mu^{2}}\right)+\text { const }\right] .
$$

A general ansatz to remove all infrared and collinear divergences [[8mindixon]:

$$
A_{n}^{\mathrm{BDS}}=1+\sum_{\ell=1}^{\infty} g^{2 \ell} A_{n}^{(\ell)}(\epsilon)=\exp \left[\sum_{\ell=1}^{\infty} g^{2 \ell}\left(\Gamma_{\text {cusp }}^{(\ell)}(\epsilon) A_{n, 0}^{(1)}(\ell \epsilon)+C^{(\ell)}+E_{n}^{(\ell)}(\epsilon)\right)\right] .
$$

- Loop amplitudes are not invariant under the dual conformal symmetry, but they satisfy an anomalous Ward identity [Korchemsky Sokekathev 2007]. BDS ansatz is exact for $n=$ 4,5 , since it is the only solution. In general, a finite remainder function is allowed, which depends on $3(n-5)$ cross-ratios, e.g. $u_{1}=\frac{x_{13}^{2} x_{46}^{2}}{x_{14}^{2} x_{36}^{2}}$ etc. for $n=6$.

The symmetry of the S-matrix in planar $\mathcal{N}=4$ SYM

- There is strong evidence for a duality between MHV amplitude and a null polygonal
 two-loop six-point [Korchemmmand Sod Heann
- The original superconformal symmetry of the amplitude are mapped to the dual symmetry of the Wilson loop by T-dualities [malearkonits

- A generalized duality between the superamplitude and a supersymmetric Wilson loop has been derived at the integrand level [skinamer 2010$][$ C2aronothool] , although a rigorous UV regularization for the super-loop has not been carried out [[siliky, Korchemskr],

$$
A_{n}\left(\lambda_{i}, \bar{\lambda}_{i}, \eta_{i}\right)=W_{n}\left(x_{i}, \theta_{i}\right)(1+\mathcal{O}(\epsilon)), \quad W_{n}=\frac{1}{N_{c}}\left\langle\operatorname{Tr} \mathcal{P} e^{-\oint \mathbf{A}\left(x_{i}, \theta_{i}\right)}\right\rangle .
$$

- The chiral super Wilson loop obscures one chiral half of superconformal symmetries. As a natural generalization, Wilson loops in non-chiral $\mathcal{N}=4$ superspace

The symmetry of the S-matrix in planar $\mathcal{N}=4$ SYM

- We define BDS-subtracted S-matrix: $A_{n, k}=A_{n}^{\mathrm{BDS}} \times R_{n, k}$, which is a finite object depending on dual conformal cross-ratios and the so-called R -invariants. It has simple collinear limits, and by definition, $R_{4,0}=R_{5,0}=R_{5,1} / R_{5,1}^{\text {rree }}=1$.
- Such invariants can be constructed using twistors of the dual (super)space $\left[\begin{array}{l}\text { Hodoges }\end{array}\right]$,

$$
\begin{aligned}
& \text { momentum twistor : } \quad \mathcal{Z}_{i}=\left(Z_{i}^{a}, \chi_{i}^{A}\right)=\left(\lambda_{i}^{\alpha}, x_{i}^{\alpha \dot{\alpha}} \lambda_{i \alpha}, \theta_{i}^{\alpha A} \lambda_{i \alpha}\right) ; \\
& \text { four-bracket : } \quad\langle i j k l\rangle=\varepsilon_{a b c d} Z_{i}^{a} Z_{j}^{b} Z_{k}^{c} Z_{l}^{d}, \quad \text { e.g. } \quad u_{1}=\frac{\langle 1234\rangle\langle 4561\rangle}{\langle 1245\rangle\langle 3461\rangle} ; \\
& \text { R-invariant : } \quad[i j k l m]=\frac{\delta^{0 \mid 4}\left(\chi_{i}^{A}\langle j k l m\rangle+\text { cyclic }\right)}{\langle i j k l\rangle\langle j k l m\rangle\langle k l m i\rangle\langle l m i j\rangle\langle m i j k\rangle}
\end{aligned}
$$

They form the fundamental representation of the dual superconformal algebra,

$$
\begin{aligned}
Q_{A}^{a}=\left(\mathfrak{Q}_{A}^{\alpha}, \overline{\mathfrak{S}}_{A}^{\dot{\alpha}}\right)=\sum_{i=1}^{n} Z_{i}^{a} \frac{\partial}{\partial \chi_{i}^{A}}, \quad \bar{Q}_{a}^{A}=\left(\mathfrak{S}_{\alpha}^{A}, \overline{\mathfrak{Q}}_{\dot{\alpha}}^{A}=\bar{s}_{\dot{\alpha}}^{A}\right)=\sum_{i=1}^{n} \chi_{i}^{A} \frac{\partial}{\partial Z_{i}^{a}}, \\
K_{b}^{a}=\left(\mathfrak{P}_{\alpha \dot{\alpha}}, \mathfrak{K}_{\alpha \dot{\alpha}}, \mathfrak{M}_{\alpha \beta}, \overline{\mathfrak{M}}_{\dot{\alpha} \dot{\beta}}, \mathfrak{D}\right)=\sum_{i=1}^{n} Z_{i}^{a} \frac{\partial}{\partial Z_{i}^{b}}, \quad R_{B}^{A}=\mathfrak{R}_{B}^{A}=\sum_{i=1}^{n} \chi_{i}^{A} \frac{\partial}{\partial \chi_{i}^{B}} .
\end{aligned}
$$

The S-matrix from the symmetry: a new proposal

- The BDS-subtracted S-matrix is not invariant under the naive \bar{Q}_{a}^{A}. We propose an all-loop equation for the "anomaly" as collinear integral (see also [skullimorer

$$
\bar{Q}_{a}^{A} R_{n, k}=\Gamma_{\text {cusp }} \operatorname{res}_{\epsilon=0} \int_{\tau=0}^{\tau=\infty}\left(d^{2 \mid 3} \mathcal{Z}_{n+1}\right)_{a}^{A}\left[R_{n+1, k+1}-R_{n, k} R_{n+1,1}^{\mathrm{tree}}\right]+\text { cyclic },
$$

where the cusp anomalous dimension is known $\Gamma_{\text {cusp }}=g^{2}-\frac{\pi^{2}}{3} g^{4}+\frac{11 \pi^{4}}{45} g^{6}+\ldots$.

- The RHS is an 1d integral over τ; one then computes the residue at $\epsilon \rightarrow 0$,

$$
\begin{aligned}
& \mathcal{Z}_{n+1}=\mathcal{Z}_{n}-\epsilon\left(\mathcal{Z}_{n-1}-\frac{\langle n-1 n 23\rangle}{\langle n 123\rangle} \tau \mathcal{Z}_{1}\right)+\mathcal{O}\left(\epsilon^{2}\right), \\
& \operatorname{res}_{\epsilon=0} \int_{\tau=0}^{\tau=\infty}\left(d^{2 \mid 3} \mathcal{Z}_{n+1}\right)_{a}^{A}=\frac{\langle n-1 n 23\rangle}{\langle n 123\rangle}(n-1 n 1)_{a} \oint_{\epsilon=0} \epsilon d \epsilon \int_{0}^{\infty} d \tau\left(d^{0 \mid 3} \chi_{n+1}\right)^{A} .
\end{aligned}
$$

The S-matrix from the symmetry: a new proposal

- Using the discrete parity symmetry, we derive an equivalent equation for level-one generator, $Q_{A}^{(1) a}=\left(s_{A}^{\alpha}, \ldots\right)=\frac{1}{2} \sum_{i, j} \operatorname{sgn}(j-i)\left(Z_{i}^{a} \frac{\partial}{\partial Z_{i}^{b}} Z_{j}^{b} \frac{\partial}{\partial \chi_{j}^{A}}-Z_{i}^{a} \frac{\partial}{\partial \chi_{i}^{B}} \chi_{j}^{B} \frac{\partial}{\partial \chi_{j}^{A}}\right)$,

$$
Q_{A}^{(1) a} R_{n, k}=\Gamma_{\mathrm{cusp}} Z_{n}^{a} \lim _{\epsilon \rightarrow 0} \int_{0}^{\infty} \frac{d \tau}{\tau}\left(d \eta_{n+1}\right)_{A}\left(R_{n+1, k}-\sum_{i, j} C_{i, j} \frac{\partial R_{n, k}}{\partial \chi_{j}}\right)+\text { cyclic. }
$$

- The equations essentially amount to Yangian invariance of the S-matrix. RHS are not anomalies: they should be interpreted as quantum corrections of (naive) sym-

- We claim that the equations are valid for any value of the coupling. When expanded in powers of $\Gamma_{\text {cusp }}$, they recursively give derivatives of all-loop amplitudes.
- The differential equations are nice: both sides are finite, regulator independent, and manifest the transcendentality of loop amplitudes. They are powerful: together with collinear limits, the solutions uniquely determine the full S-matrix.

The S-matrix from the symmetry: outline of a derivation

- The way \bar{Q} acts on a Wilson loop is by inserting a fermion operator on the edges, which was calculated in explicit examples using Feynman diagrams [2aton-Hwot]

$$
\bar{Q}_{\dot{\alpha}}^{A}\left\langle W_{n}\right\rangle \propto g^{2} \oint d x_{\dot{\alpha} \alpha}\left\langle\left(\psi^{A}+F \theta^{A}+\ldots\right)^{\alpha} W_{n}\right\rangle .
$$

- The key new ingredient: the fermion insertion is the unique excitation with given quantum numbers. The Operator Product Expansion [$[$ diday Gaialt Maldacena $]$ allows us to extract the excited n-gon Wilson loop from an ($n+1$)-gon in collinear limit,

$$
\frac{1}{A_{n}^{\mathrm{BDS}}} \bar{Q}\left\langle W_{n, k}\right\rangle=\frac{g^{2}}{F\left(g^{2}\right)} \operatorname{res}_{\epsilon=0} \int_{\tau=0}^{\tau=\infty} d^{2 \mid 3} \mathcal{Z}_{n+1} R_{n+1, k+1}(\tau, \epsilon)+\text { cyclic. }
$$

Given that BDS ansatz is one-loop exact, we obtain the \bar{Q} of BDS,

$$
\left\langle W_{n, k}\right\rangle \bar{Q} \frac{1}{A_{n}^{\mathrm{BDS}}}=-\Gamma_{\text {cusp }} R_{n, k} \operatorname{res}_{\epsilon=0} \int_{\tau=0}^{\tau=\infty} d^{2 \mid 3} \mathcal{Z}_{n+1} R_{n+1,1}^{\text {tree }}(\tau, \epsilon)+\text { cyclic. } .
$$

- Both τ integrals diverge, but the sum must be finite, so we have $g^{2} / F\left(g^{2}\right)=\Gamma_{\text {cusp }}$. A crucial test of our derivation is to check the dispersion relation of the insertion.

The S-matrix from the symmetry: outline of a derivation

The S-matrix from the symmetry: outline of a derivation

- The fermion operators are labeled by a momentum, p, conjugate to its position along the edge. We want to understand the $\log \epsilon$ term in momentum space,

$$
\lim _{\epsilon \rightarrow 0} \log \left(\int_{0}^{\infty} d \tau \tau^{i \frac{p}{2}} d^{0 \mid 3} \chi_{n+1} R_{n+1,1}\right) \rightarrow \log \epsilon \times \gamma(p)+C(p),
$$

where the dispersion relation $\gamma(p)$ has to match that of a fermion excitation of the null edge, known for any values of the coupling thanks to integrability [[8asso ${ }^{2010}$].

- We have derived $R_{6,1}$ up to two loops, which can be used to give $\gamma(p)$ to order $\Gamma_{\text {cusp }}^{2}$,

$$
\gamma(p)=\Gamma_{\mathrm{cusp}}\left(\psi_{+}-\psi(1)\right)-\frac{\Gamma_{\mathrm{cusp}}^{2}}{8}\left(\psi_{+}^{\prime \prime}+4 \psi_{-}^{\prime}\left(\psi_{-}-\frac{1}{p}\right)+6 \zeta(3)\right)
$$

This agrees precisely with [[2asso] , and it also confirms the prefactor must be $\Gamma_{\text {cusp }}$.

- For RHS of the equations, we only need the total- τ integral (zero-momentum). The cancelation of $\log \epsilon$ divergences in that case is guaranteed by the Goldstone theorem: the fermion with $p=0$ is a Goldstone fermion, thus $\gamma(0)=0$.

The S-matrix from the symmetry: jumpstarting amplitudes I

- The simplest case, MHV remainder function, $R_{n, 0}$, is independent of Grassmann variables. We can obtain all the derivatives from its \bar{Q},

$$
\frac{\partial}{\partial \chi_{i}^{\chi}} \bar{Q}_{a}^{1} R_{n, 0}=\frac{\partial}{\partial Z_{i}^{a}} R_{n, 0},
$$

which uniquely determine $R_{n, 0}$, up to a constant (fixed by collinear limit). From the RHS, we can already deduce its total derivative must be of the form

$$
d R_{n, 0}=\sum_{i, j} F_{i, j} d \log \langle i-1 i i+1 j\rangle,
$$

which holds to all loops. This proves the conjecture of [${ }_{201010}{ }^{\text {con-Huot }}$].

- Remarkably, the solution to \bar{Q} equation is also unique for NMHV amplitude, up to a linear combination of R-invariants, which can be fixed by collinear limits.
- We need both equations beyond NMHV. For all-loop $N^{k} \mathrm{MHV}$, the solutions are unique, up to invariants under naive Q, \bar{Q} and $Q^{(1)}$. It is known [Kooranhensky, [Prummong] that all such invariants are given by the Grassmannian formula [Ackeani-Hmed kapan acolazo 200].

The S-matrix from the symmetry: jumpstarting amplitudes I

- From the collinear integral of $R_{7,1}^{1 \text {-loop }}$, one can easily compute the derivative of two-

$$
R_{6,0}^{2-\text { loop }}=4 \sum_{i=1}^{3}\left(L_{4}^{+}\left(u_{i}\right)-\frac{1}{2} \operatorname{Li}_{4}\left(1-\frac{1}{u_{i}}\right)\right)-\frac{1}{2}\left(\sum_{i=1}^{3} \operatorname{Li}_{2}\left(1-\frac{1}{u_{i}}\right)\right)^{2}+\frac{1}{6} J^{4}+\frac{\pi^{2}}{3} J^{2}+\frac{\pi^{4}}{18} .
$$

Higher-point amplitudes are similar; we found the symbol agrees with [[2anon-Huor].

- We derived the two-loop NMHV hexagon, and found agreement with results in

 tions, e.g. OPE constraints, and assumptions on possible forms of the symbol. We confirmed their assumptions, and fixed the two undetermined parameters,

$$
S\left[R_{6,0}^{3-\text { lop }}\right]=\left(S[X]-\frac{3}{8} S\left[f_{1}\right]+\frac{7}{32} S\left[f_{2}\right]\right)\left(u_{1}, u_{2}, u_{3}\right) .
$$

Jumpstarting amplitudes II: restricted kinematics

- Amplitudes/Wilson loops simplify significantly for the restricted kinematics when the $2 n$ external momenta/edges are embedded in a two-dimensional sub-
 cally, and the symmetry factorizes $\operatorname{PSU}(2,2 \mid 4) \rightarrow S L(2 \mid 2)_{\text {even }} \times S L(2 \mid 2)_{\text {odd }}$:

$$
\mathcal{Z}_{2 i-1}=\left(\lambda_{2 i-1}^{1}, 0, \lambda_{2 i-1}^{3}, 0, \chi_{2 i-1}^{1}, 0, \chi_{2 i-1}^{3}, 0\right), \quad \mathcal{Z}_{2 i}=\left(0, \lambda_{2 i}^{2}, 0, \lambda_{2 i}^{4}, 0, \chi_{2 i}^{2}, 0, \chi_{2 i}^{4}\right) .
$$

Four-brackets factorize, $\langle 2 i-12 j-12 k 2 l\rangle=\langle 2 i-12 j-1\rangle[2 k 2 l]$; even and odd cross-ratios are built from 1d distances, $u_{a, b, c, d}=\frac{\langle a b\rangle\langle c d\rangle}{\langle a c\rangle\langle b d\rangle}$.

- Superamplitudes will be built from "mini" R-invariants in even and odd sector,

$$
(a b c)=\frac{\delta^{0 \mid 2}\left(\langle a b\rangle \chi_{c}+\langle b c\rangle \chi_{a}+\langle c a\rangle \chi_{b}\right)}{\langle a b\rangle\langle b c\rangle\langle c a\rangle},
$$

Tree amplitudes are trivial combinations of R-invariants, which, e.g. for $\mathrm{N}^{2} \mathrm{MHV}$, are products of $(a b c d):=-(a b c)(a c d)$. Loop amplitudes are combinations with coefficients being pure, transcendental functions of conformal cross-ratios.

Jumpstarting amplitudes II: restricted kinematics

- The \bar{Q} equation in restricted kinematics is derived by considering the overlap of a $2 n$-gon with the collinear limit of ($2 n+2$)-gon. In the even sector, we have,

$$
\bar{Q}_{a}^{A} R_{2 n, k}=\Gamma_{\text {cusp }} \int d^{1 \mid 2} \lambda_{2 n+1} \int d^{0 \mid 1} \lambda_{2 n+2}\left(R_{2 n+2, k+1}-R^{\text {tree }} R_{2 n, k}\right)+\text { cyclic },
$$

where we take $\lambda_{2 n+2}=\lambda_{2 n}+\epsilon \lambda_{2}$ supersymmetrically, and explicitly the measure is

$$
\int d^{1 \mid 2} \lambda_{2 n+1} \int d^{0 \mid 1} \lambda_{2 n+2}=\lambda_{2 n, a} \lim _{\epsilon \rightarrow 0} \int_{\lambda_{2 n-1}}^{\lambda_{1}}\left\langle\lambda_{2 n+1} d \lambda_{2 n+1}\right\rangle \int d^{2} \chi_{2 n+1}\left(d \chi_{2 n+2}\right)^{A} .
$$

- From a reasonably nice form of $\mathrm{N}^{2} \mathrm{MHV}$ tree, we applied the equation twice and

- A nice byproduct from the computation is the one-loop NMHV, now written in a basis of R-invariants, in terms of functions of cross-ratios, e.g. the octagon

$$
\begin{aligned}
& R_{8,1}=\left((357)[246] f_{8,1}^{1}\left(u_{1}, u_{2}\right)+7 \text { cyclic }\right)+R_{8,1}^{\text {tree }} f_{8,1}^{2}\left(u_{1}, u_{2}\right) \\
& f_{8,1}^{1,1-\operatorname{loop}}=\log \left(1-u_{1}\right) \log \left(1-u_{2}\right), \quad f_{8,1}^{2,1-\operatorname{loop}}=\log u_{1}\left(1-u_{1}\right) \log u_{2}\left(1-u_{2}\right)
\end{aligned}
$$

Jumpstarting amplitudes II: one-loop N^{2} MHV

- For $k+\ell=3$, i.e. one-loop N^{2} MHV, two-loop NMHV and three-loop MHV, new structures, such as combinations $x-y, 1-x-y$, appear. We computed the amplitudes explicitly using the equations. The result is highly non-trivial and interesting.
- The one-loop $\mathrm{N}^{2} \mathrm{MHV}$ octagon can be put into a nice form ($u_{i}:=u_{i, i+2, i+4, i+6}$)

$$
R_{8,2}=R_{8,2}^{\text {tree }} \frac{u_{1} u_{2}}{1-u_{1}-u_{2}}\left(f_{8,2}\left(u_{1}, u_{2}\right)+f_{8,2}\left(u_{2}, u_{1}\right)\right)+(3 \text { cyclic }),
$$

where $R_{8,2}^{\text {tre }}=(1357)[2468], \quad f_{8,2}(x, y)=\operatorname{Li}_{2}(x)+\frac{1}{2} \log x \log \left(\frac{1-x}{y}\right)-\frac{\pi^{2}}{8}$.

- The same pattern also appears in higher-point $\mathrm{N}^{2} \mathrm{MHV}$, e.g. the decagon reads,

$$
\begin{aligned}
R_{10,2}= & (1357)[26810] f_{10,2}^{1}\left(u_{1}, u_{6}\right)+(4 \text { cyclic })+\left[(1357)[46810] f_{10,2}^{1}\left(u_{1}, u_{4}\right)\right. \\
& \left.+(1357)[2468] f_{10,2}^{2}\left(u_{1}, u_{2}\right)+2(1357)[2410][468] f_{8,2}\left(1-u_{1}, u_{10}\right)+(9 \text { cyclic })\right]+\ldots,
\end{aligned}
$$

where ... denotes remaining $\log \log$ terms with pure R invariants as coefficients;

$$
\begin{aligned}
& f_{10,2}^{1}(x, y)=2 \frac{x y}{1-x-y}\left(f_{8,2}(1-x, 1-y)-f_{8,2}(y, x)\right) \\
& f_{10,2}^{2}(x, y)=2 \frac{y(1-x)}{x-y} f_{8,2}(y, 1-x)-2 \frac{x(1-y)}{x-y} f_{8,2}(x, 1-y) .
\end{aligned}
$$

Jumpstarting amplitudes II: two-loop NMHV

- We determined the two-loop NMHV octagon, up to one parameter corresponding to adding a multiple of the one-loop amplitude, in terms of the two functions:

$$
f_{8,1}^{1,2-\text { loop }}=\mathrm{Li}_{2,2}\left(x, \frac{1-y}{x}\right)+\mathrm{Li}_{2,2}\left(1-x, \frac{y}{1-x}\right)-\mathrm{Li}_{2,2}\left(x, \frac{1}{x}\right)-\mathrm{Li}_{2,2}(1, y)+C(x, y)+(x \leftrightarrow y),
$$

where the "classical part" $C(x, y)$ involves only polylogarithms of degree 3 or less:

$$
\begin{aligned}
C(x, y)= & -\left(\operatorname{Li}_{3}\left(\frac{x y}{(1-x)(1-y)}\right)-\operatorname{Li}_{3}\left(\frac{x}{1-y}\right)-\operatorname{Li}_{3}\left(\frac{y}{1-x}\right)+\operatorname{Li}_{3}(x)+\operatorname{Li}_{3}(y)+\left(\operatorname{Li}_{2}\left(\frac{y}{1-x}\right)-\operatorname{Li}_{2}(y)\right) \log \frac{1-y}{x}\right) \log y(1-x) \\
& +\left(4 \mathrm{Li}_{3}(y)+2 \operatorname{Li}_{3}(1-y)+\operatorname{Li}_{2}(y) \log \frac{x^{2}(1-y)}{y}-2 \zeta(3)\right) \log (1-x) \\
& +\left(\frac{1}{2} \log x y \log (1-x)(1-y)-\frac{1}{2} \log x \log y\right) \log (1-x) \log (1-y) \\
& +\frac{1}{2} \operatorname{Li}_{2}(y) \log ^{2}(1-x)+\frac{3}{2} \operatorname{Li}_{2}(x) \operatorname{Li}_{2}(y)+\frac{5}{8} \log ^{2}(1-x) \log ^{2}(1-y)
\end{aligned}
$$

and a simpler function $f_{8,1}^{2,2-\text { loop }}=g(x, y)+(x \leftrightarrow 1-x)+(y \leftrightarrow 1-y)+(x \leftrightarrow y)$:

$$
\begin{aligned}
g(x, y)= & \left(6 \operatorname{Li}_{3}(1-x)-\mathrm{Li}_{2}(1-x) \log \frac{1-x}{x}+\log ^{2} x \log 1-x\right) \log y+\left(\frac{1}{8} \log x+\frac{3}{4} \log 1-x\right) \log x \log ^{2} y \\
& -\frac{1}{8} \log x \log 1-x \log y \log 1-y-3 \zeta(3) \log x+\frac{\pi^{2}}{6}\left(\frac{1}{4} \log x \log \frac{x}{(1-x)}-\log x \log y\right)+\frac{\pi^{4}}{160} .
\end{aligned}
$$

Jumpstarting amplitudes II: two-loop NMHV

- The function $f_{8,1}^{1}$ is basically a component amplitude, $f_{8,1}^{1}=\left.\langle 13\rangle[68] R_{8,1}\right|_{\chi^{1} \chi^{3} \chi^{6} \chi^{8}}$. We consider small x expansion, $f_{8,1}^{1}\left(v=\frac{x}{1-x}, w=\frac{y}{1-y}\right)=\sum_{n=1}^{\infty} f_{n}(w) v^{n}$:

$$
\begin{aligned}
f_{n}^{2-\operatorname{loop}}= & \left.\log v f_{n}^{2-\operatorname{loop}}\right|_{\log v}+\left[\frac{w^{n}}{n^{2}}\left(2 \operatorname{Li}_{2}(-w)+\log w \log (1+w)\right)\right]_{\mathrm{reg}}+\left[\frac{2 w^{n}}{n^{3}} \log \frac{1+w}{w}\right]_{\mathrm{reg}} \\
& +\frac{4(-)^{n}}{n^{3}} \log (1+w)+\frac{(-)^{n}}{n}\left(\frac{1}{n}-2 S_{1}(n)\right) \log w \log (1+w)-\frac{(-)^{n}}{n^{2}} \operatorname{Li}_{2}(-w) \\
& +\frac{4(-)^{n}}{n}\left(S_{1}(n)-\frac{1}{n}\right) \log (1+w)^{2}-\frac{(-)^{n}}{n}\left(6 \operatorname{Li}_{3}(-w)-\log w \operatorname{Li}_{2}(-w)+\pi^{2} \log (1+w)\right), \\
\left.f_{n}^{2-\operatorname{loop}}\right|_{\log v} & =\left[\frac{w^{n}}{n^{2}} \log \frac{w}{1+w}\right]_{\mathrm{reg}}+\frac{(-1)^{n}}{n} \log ^{2}(1+w)-\frac{(-1)^{n}}{n^{2}} \log (1+w),
\end{aligned}
$$

where the $\log v$ part agrees with OPE leading-order predictions. The most interesting part is in terms which mix v with w, while the remaining terms are factorized.

- The result becomes remarkably simple after doing a Fourier (Mellin) transform,

$$
\begin{aligned}
& f(p, q)=\int_{0}^{1} \frac{d v}{v} \int_{0}^{1} \frac{d w}{w} f(v, w) v^{i \frac{p}{2}} w^{i \frac{q}{2}} \\
& f_{8,1}^{1,2-\text { loop }}(p, q)=\frac{\pi}{p \sinh \left(\frac{\pi p}{2}\right)} \frac{\pi}{q \sinh \left(\frac{\pi q}{2}\right)} \frac{\operatorname{coth}\left(\frac{\pi p}{2}\right)-\operatorname{coth}\left(\frac{\pi q}{2}\right)}{p-q}+\text { factorized. }
\end{aligned}
$$

Jumpstarting amplitudes II: three-Ioop MHV

- We also derived the two-loop NMHV decagon, whose non-trivial, mixed part is essentially a sum of octagons. Based on this, we obtained the complete function for the three-loop MHV octagon, up to two constants multiplying two-loop MHV and NMHV octagons. All other beyond-the-symbol ambiguities were fixed.
- The result, in terms of functions like $\mathrm{Li}_{3,3}$, is relatively involved, but the small x expansion is compact; in particular the mixed part is similar to two-loop NMHV,

$$
\begin{aligned}
f_{n}^{3-\operatorname{loop}}= & \sum_{i=1}^{n}\left[c_{i} w^{i}\left(\log v \log \frac{w}{1+w}+2 \operatorname{Li}_{2}(-w)+\log w \log (1+w)\right)+c_{i}^{\prime} w^{i} \log \frac{w}{1+w}\right]_{\mathrm{reg}} \\
& +\sum_{i=1}^{n}\left[\frac{c_{i}}{w^{i}}\left(\log v \log (1+w)+2 \operatorname{Li}_{2}(-w)+\log w \log (1+w)\right)+\frac{c_{i}^{\prime}}{w^{i}} \log (1+w)\right]_{\mathrm{reg}} \\
& + \text { factorized } .
\end{aligned}
$$

- We expect it to have a nice Mellin representation, and possibly also for higher points. We have a rich set of data: non-trivial but simple, suggesting some underlying picture. How to understand such nice structures from integrability?

Summary and outlook

- The all-loop S-matrix in planar $\mathcal{N}=4$ SYM is invariant under a suitably deformed Yangian symmetry at the quantum level, and is fully determined by it.
- We derived new, elegant equations based on the quantum-corrected symmetry, and tested them extensively against e.g. results of multi-loop amplitudes and OPE.
- The equations have provided new data for the S-matrix of planar $\mathcal{N}=4$ SYM; we hope that they will provide more insights into its integrability.
- Open questions
- OPE interpretations of the result, especially how to understand multi-particle states? Relations to the spin chain picture in [[sever Wang viera 2012 ?
- Understanding the equations at strong coupling? Relations to TBA, Y-system?
- Beyond amplitudes in $\mathcal{N}=4$ SYM: non-chiral Wilson loops/correlation functions in the light-cone limit? the S-matrix of super Chern-Simons from symmetries?

