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Introduction and motivation

• One of the most fundamental quantities in a quantum field theory is the potential

between charged particles.

• In gauge theories this is captured by a long rectangular Wilson loop, or a pair of

antiparallel lines.
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Introduction and motivation

• One of the most fundamental quantities in a quantum field theory is the potential

between charged particles.

• In gauge theories this is captured by a long rectangular Wilson loop, or a pair of

antiparallel lines.

• Such an object exists also in N = 4 SYM.

– The Wilson loop calculates the potential between two W-bosons arising from a

Higgs mechanism.
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Introduction and motivation

• One of the most fundamental quantities in a quantum field theory is the potential

between charged particles.

• In gauge theories this is captured by a long rectangular Wilson loop, or a pair of

antiparallel lines.

• Such an object exists also in N = 4 SYM.

– The Wilson loop calculates the potential between two W-bosons arising from a

Higgs mechanism.

• Explicit calculations at weak and at strong coupling:

V (L, λ) =
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Introduction and motivation

• One of the most fundamental quantities in a quantum field theory is the potential

between charged particles.

• In gauge theories this is captured by a long rectangular Wilson loop, or a pair of

antiparallel lines.

• Such an object exists also in N = 4 SYM.

– The Wilson loop calculates the potential between two W-bosons arising from a

Higgs mechanism.

• Explicit calculations at weak and at strong coupling:

V (L, λ) =
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• Recently O(λ3) was calculated.
[

Correa, Henn
Maldacena, Sever

]

• Hard to guess how to connect these two regimes.
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• Hard to guess how to connect these two regimes.

• Can we do any better?
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Introduction and motivation

• One of the most fundamental quantities in a quantum field theory is the potential

between charged particles.

• In gauge theories this is captured by a long rectangular Wilson loop, or a pair of

antiparallel lines.

• Such an object exists also in N = 4 SYM.

– The Wilson loop calculates the potential between two W-bosons arising from a

Higgs mechanism.

• Explicit calculations at weak and at strong coupling:

V (L, λ) =
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√
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Γ( 14 )
4 L

(

1− 1.3359 . . .√
λ

+ · · ·
)

λ ≫ 1

• Recently O(λ3) was calculated.
[

Correa, Henn
Maldacena, Sever

]

• Hard to guess how to connect these two regimes.

• Can we do any better?

• Shouldn’t integrability allow us to calculate this for all values of the coupling (in the

planar approximation)?
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The end
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Outline

• Introduction and motivation

• Wilson loops

– Cusp anomalous dimensions and the quark-antiquark potential

– Local operator insertions

• Wilson loops in N = 4 SYM

– Perturbative calculation

– String calculation

– Expansions in small angles

• Wilson loops and integrability

– Operator insertions and open spin–chains

– All loop reflection matrix and a twist

– Wrapping effects and the quark-antiquark potential
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Wilson loops

• In any gauge theory one can define Wilson loop operators

W = TrP exp

[
∮

iAµẋ
µ ds

]

• Can be defined for an arbitrary curve in spacetime.

• This is the holonomy of the gauge field.

Nadav Drukker 6 Integrable Wilson loops
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Wilson loops

• In any gauge theory one can define Wilson loop operators

W = TrP exp

[
∮

iAµẋ
µ ds

]

• Can be defined for an arbitrary curve in spacetime.

• This is the holonomy of the gauge field.

• For a pair of antiparallel lines

〈W 〉 ≈ exp
[

− T V (L, λ)
]

• The potential behaves like

V (L, λ) =















g(λ) screening
f(λ)
L conformal

α′L confining

T

L
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Cusp anomalous dimensions and quark-antiquark potential

• A regular Wilson loop will suffer from linear UV divergences (uninteresting).

• The antiparallel lines suffer also from a linear IR divergence (subtle).
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Cusp anomalous dimensions and quark-antiquark potential

• A regular Wilson loop will suffer from linear UV divergences (uninteresting).

• The antiparallel lines suffer also from a linear IR divergence (subtle).

• It is simpler to control logarithmic divergences.
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Cusp anomalous dimensions and quark-antiquark potential

• A regular Wilson loop will suffer from linear UV divergences (uninteresting).

• The antiparallel lines suffer also from a linear IR divergence (subtle).

• It is simpler to control logarithmic divergences.

• Consider Wilson loops with cusps

• All but the black line will suffer from logarithmic divergences.

• Taking φ = iϕ and ϕ → ∞ gives the Lorenzian null cusp.
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Cusp anomalous dimensions and quark-antiquark potential

• A regular Wilson loop will suffer from linear UV divergences (uninteresting).

• The antiparallel lines suffer also from a linear IR divergence (subtle).

• It is simpler to control logarithmic divergences.

• Consider Wilson loops with cusps

• All but the black line will suffer from logarithmic divergences.

• Taking φ = iϕ and ϕ → ∞ gives the Lorenzian null cusp.

My talk will focus on the euclidean cusp, but all that I

say can be immediately extended to Minkowski space.

Nadav Drukker 7-c Integrable Wilson loops



'

&

$

%

• One can also consider a compact versions of

cusped loops.

• No gauge-invariance subtleties!

−2

−2

−4

−4

2

2

4

4
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• One can also consider a compact versions of

cusped loops.

• No gauge-invariance subtleties!

• In a conformal theory they will be equivalent

to the previous picture (up to a finite

anomaly).

• In any case, the log divergences, which are a

UV effect will remain the same.

−2

−2

−4

−4

2

2

4

4
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• One can also consider a compact versions of

cusped loops.

• No gauge-invariance subtleties!

• In a conformal theory they will be equivalent

to the previous picture (up to a finite

anomaly).

• In any case, the log divergences, which are a

UV effect will remain the same.

• I label the opening angle π − φ.

• φ = 0 is the circle.

• φ → π gives the antiparallel lines.
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• One can also consider a compact versions of

cusped loops.

• No gauge-invariance subtleties!

• In a conformal theory they will be equivalent

to the previous picture (up to a finite

anomaly).

• In any case, the log divergences, which are a

UV effect will remain the same.

• I label the opening angle π − φ.

• φ = 0 is the circle.

• φ → π gives the antiparallel lines.

−2

−2

−4

−4

2

2

4

4

• In a conformal theory, by the usual conformal Ward identity

〈W 〉 ∼ 1

d2∆
, d = r

cos φ
2

1− sin φ
2

• ∆ is the coefficient of the log divergence.
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• By the inverse exponential map we get the gauge theory on S
3 × R

• These are parallel lines on S
3 × R.
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• By the inverse exponential map we get the gauge theory on S
3 × R

• These are parallel lines on S
3 × R.

• From this last picture we expect

〈W 〉 ≈ exp
[

− T V (φ, λ)
]

• In a conformal theory T is related to divergence at the cusp by the

exponential map

T = log
R

ǫ

• Therefore V (φ, λ) is the same as ∆, the coefficient of the log

divergence.
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• By the inverse exponential map we get the gauge theory on S
3 × R

• These are parallel lines on S
3 × R.

• From this last picture we expect

〈W 〉 ≈ exp
[

− T V (φ, λ)
]

• In a conformal theory T is related to divergence at the cusp by the

exponential map

T = log
R

ǫ

• Therefore V (φ, λ) is the same as ∆, the coefficient of the log

divergence.

• This V (φ, λ) is the generalization of V (L, λ) — the quark-antiquark

potential.

• For a conformal theory it has a pole at φ → π and the residue is

LV (L, λ).

• More generally controls all log divergences of all Wilson loops.

• Needed for a proper renormalization program of Wilson loop operators (and to derive

regularized loop equations).
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Local operator insertions

• There is another source of log divergences in Wilson loops:

Adjoint valued operators inserted into the Wilson loop.
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Local operator insertions

• There is another source of log divergences in Wilson loops:

Adjoint valued operators inserted into the Wilson loop.

• For example, one operator in the straight line

W = TrP
[

O(0) exp

(
∫

iAµẋ
µ ds

)]

= Tr

[

P exp

(
∫ 0

−∞

iAµẋ
µ ds

)

O(0)P exp

(
∫

∞

0

iAµẋ
µ ds

)]

• O is any adjoint operator, e.g., F23, D
2F14, F12(F43)

2, etc.

• If the theory has adjoint scalars and/or fermions, they can be inserted as well.
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Local operator insertions

• There is another source of log divergences in Wilson loops:

Adjoint valued operators inserted into the Wilson loop.

• For example, one operator in the straight line

W = TrP
[

O(0) exp

(
∫

iAµẋ
µ ds

)]

= Tr

[

P exp

(
∫ 0

−∞

iAµẋ
µ ds

)

O(0)P exp

(
∫

∞

0

iAµẋ
µ ds

)]

• O is any adjoint operator, e.g., F23, D
2F14, F12(F43)

2, etc.

• If the theory has adjoint scalars and/or fermions, they can be inserted as well.

• In a conformal theory, a Wilson loop with two operator insertions at a distance d will

have a VEV

〈W 〉 ∼ 1

d2∆

• ∆ is the coefficient of the log divergences — the conformal dimension of the insertions.
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Wilson loops in N = 4 SYM

• In addition to the gauge field, N = 4 SYM has six real scalar fields and four fermions,

all in the adjoint of the gauge group.

• The most natural Wilson loops in N = 4 SYM include a coupling to the scalar fields

W = TrP exp

[
∮

(

iAµẋ
µ + |ẋ|nIΦI

)

ds

]

nI do not have to be constant.

• For a smooth loop and continuous |nI | = 1, these are finite observables.

• The Wilson loop with the scalar coupling is natural for calculating the potential

between W-bosons.

Nadav Drukker 11 Integrable Wilson loops
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Wilson loops in N = 4 SYM

• In addition to the gauge field, N = 4 SYM has six real scalar fields and four fermions,

all in the adjoint of the gauge group.

• The most natural Wilson loops in N = 4 SYM include a coupling to the scalar fields

W = TrP exp

[
∮

(

iAµẋ
µ + |ẋ|nIΦI

)

ds

]

nI do not have to be constant.

• For a smooth loop and continuous |nI | = 1, these are finite observables.

• The Wilson loop with the scalar coupling is natural for calculating the potential

between W-bosons.

• For the loop with cusp can have each line couple to a different scalar field

Φ1 and Φ1 cos θ +Φ2 sin θ

• Gives another parameter: θ.
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Wilson loops in N = 4 SYM

• In addition to the gauge field, N = 4 SYM has six real scalar fields and four fermions,

all in the adjoint of the gauge group.

• The most natural Wilson loops in N = 4 SYM include a coupling to the scalar fields

W = TrP exp

[
∮

(

iAµẋ
µ + |ẋ|nIΦI

)

ds

]

nI do not have to be constant.

• For a smooth loop and continuous |nI | = 1, these are finite observables.

• The Wilson loop with the scalar coupling is natural for calculating the potential

between W-bosons.

• For the loop with cusp can have each line couple to a different scalar field

Φ1 and Φ1 cos θ +Φ2 sin θ

• Gives another parameter: θ.

• Crucial point: Calculations of V (φ, θ, λ) are no harder than for the antiparallel case!
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Perturbative calculation

• Expanding at weak coupling

V (φ, θ, λ) =
∞
∑

n=1

(

λ

16π2

)n

V (n)(φ, θ)

• And at strong coupling

V (φ, θ, λ) =

√
λ

4π

∞
∑

l=0

(

4π√
λ

)l

V
(l)
AdS(φ, θ)

Nadav Drukker 12 Integrable Wilson loops
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1–loop

• Just the exchange of a gluon and scalar field

• This graph is given by the integral

∂λ〈W 〉
∣

∣

∣

λ=0
=

∫

s<t

ds dt
〈

(iAµẋ
µ(s) + |ẋ|ΦInI(s)) (iAµẋ

µ(t) + |ẋ|ΦJnJ(t))
〉

=
λ

8π2

∫

ds dt
−ẋµ(s)ẋ

µ(t) + nI(s)nI(t)

|x(s)− x(t)|2

=
λ

8π2

∫

ds dt
− cosφ+ cos θ

s2 + t2 + 2st cosφ
= − λ

8π2

cosφ− cos θ

sinφ
φ log

R

ǫ

• Therefore

V (1)(φ, θ) = 2
cosφ− cos θ

sinφ
φ

Nadav Drukker 13 Integrable Wilson loops
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Higher order graphs

• Ladder graphs are relatively easy.

• They dominate a funny double-scaled limit where

θ → i∞ with λθ fixed.
[

Correa, Henn
Maldacena, Sever

]

• They are given by harmonic polylogs apparently to

all orders.
[

Henn, Huber

]

• Results at weak and strong coupling match.

Nadav Drukker 14 Integrable Wilson loops
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Higher order graphs

• Ladder graphs are relatively easy.

• They dominate a funny double-scaled limit where

θ → i∞ with λθ fixed.
[

Correa, Henn
Maldacena, Sever

]

• They are given by harmonic polylogs apparently to

all orders.
[

Henn, Huber

]

• Results at weak and strong coupling match.

• Interacting graphs are a bit more complicated.

• At two loops there are bubble graphs and the single

cubic vertex graphs.

• they give

V
(2)
int (φ, θ) = −2

3
(π2 − φ2)V (1)(φ, θ)

• Full 3 loop answer was also calculated.
[

Correa, Henn
Maldacena, Sever

]
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String calculation
[

Maldacena

][

Rey, Yee

][

Drukker
Gross, Ooguri

]

• Within the AdS/CFT correspondence Wilson loops are calculated by an infinite open

string extending to the boundary of AdS.

• At the leading order one should find the minimal area surface.

• One loop requires studying the string fluctuations, and so on.

Nadav Drukker 15 Integrable Wilson loops
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String calculation
[

Maldacena

][

Rey, Yee

][

Drukker
Gross, Ooguri

]

• Within the AdS/CFT correspondence Wilson loops are calculated by an infinite open

string extending to the boundary of AdS.

• At the leading order one should find the minimal area surface.

• One loop requires studying the string fluctuations, and so on.

• In our case the boundary conditions are lines separated by π − φ

on the boundary of AdS and θ on S
5.

• All the string solutions fit inside AdS3 × S
1

ds2 =
√
λ
(

− cosh2 ρ dt2 + dρ2 + sinh2 ρ dϕ2 + dϑ2
)

Nadav Drukker 15-a Integrable Wilson loops
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String calculation
[

Maldacena

][

Rey, Yee

][

Drukker
Gross, Ooguri

]

• Within the AdS/CFT correspondence Wilson loops are calculated by an infinite open

string extending to the boundary of AdS.

• At the leading order one should find the minimal area surface.

• One loop requires studying the string fluctuations, and so on.

• In our case the boundary conditions are lines separated by π − φ

on the boundary of AdS and θ on S
5.

• All the string solutions fit inside AdS3 × S
1

ds2 =
√
λ
(

− cosh2 ρ dt2 + dρ2 + sinh2 ρ dϕ2 + dϑ2
)

• The equations of motion can be solved by elliptic integrals.

θ =
2b q

√

b4 + p2
K , φ = π − 2p2

b
√

b4 + p2

(

K−Π
(

b4

b4+p2 |k2
)

)

where b, k, p and q are related by

b2 =
1

2

(

p2 − q2 +
√

(p2 − q2)2 + 4p2
)

k2 =
b2(b2 − p2)

b4 + p2

• These are transcendental equations for p, q in terms of θ, φ
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• The induced metric is

ds2ind =
√
λ
1− k2

cn2(σ)

[

−dτ2 + dσ2
]

.

• The classical action can also be calculated

Scl =

√
λ

2π

∫

dt dϕ p cosh2 ρ sinh2 ρ =
T
√
λ

π

√

b4 + p2

b p

[

(b2 + 1)p2

b4 + p2
K− E

]

• This determines V
(0)
AdS as a function of p, q and implicitly in term of φ, θ.

Nadav Drukker 16 Integrable Wilson loops
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• The induced metric is

ds2ind =
√
λ
1− k2

cn2(σ)

[

−dτ2 + dσ2
]

.

• The classical action can also be calculated

Scl =

√
λ

2π

∫

dt dϕ p cosh2 ρ sinh2 ρ =
T
√
λ

π

√

b4 + p2

b p

[

(b2 + 1)p2

b4 + p2
K− E

]

• This determines V
(0)
AdS as a function of p, q and implicitly in term of φ, θ.

• We can also expand around φ = θ = 0

V
(0)
AdS(φ, θ) =

1

π
(θ2 − φ2)− 1

8π3
(θ2 − φ2)

(

θ2 − 5φ2
)

+
1

64π5
(θ2 − φ2)

(

θ4 − 14θ2φ2 + 37φ4
)

− 1

2048π7
(θ2 − φ2)

(

θ6 − 27θ4φ2 + 291θ2φ4 − 585φ6
)

+O((φ, θ)10)
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1–loop determinant

• At one–loop we should consider the 8 transverse bosonic and 8 fermionic fluctuation

modes.

• Such a calculation was done long ago for a confining string by Lüscher.

• The “Lüscher term” is proportional to the number of transverse dimensions and

always has a Coulomb behavior.

• We have to repeat the calculation in the AdS5 × S
5 sigma model.

Nadav Drukker 17 Integrable Wilson loops
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1–loop determinant

• At one–loop we should consider the 8 transverse bosonic and 8 fermionic fluctuation

modes.

• Such a calculation was done long ago for a confining string by Lüscher.

• The “Lüscher term” is proportional to the number of transverse dimensions and

always has a Coulomb behavior.

• We have to repeat the calculation in the AdS5 × S
5 sigma model.

• All the differential operators can be written as Lamé operators

−∂2
τ − ∂2

σ + 2k2 sn2(σ|k2)

• Requires using many elliptic identities, using different ks and rescaling τ and σ.
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• The result of a tedious calculation gives

Γreg = −T
2

lim
ǫ→0

∫ +∞

−∞

dω

2π
ln

ǫ2ω2 det8 Oǫ
F

det5 Oǫ
0 det

2 Oǫ
1 detOǫ

2

where

detOǫ
0
∼= sinh(2Kω)

ω

detOǫ
1
∼= − sinh(2K1 Z(α1))

ǫ2
√

(ω2 − k2)(ω2 − k2 + 1)(ω − 2k2 + 1)

detOǫ
2
∼= sinh(2K2 Z(α2))

ǫ2(1− k2)3/2(k1 + 1)3
√

(ω2
2 + k22)(ω

2
2 + 1)(ω2

2 + k22 + 1)

detOǫ
F
∼= 8K2

√

ω2
3 + k22 sinh(K2 Z(αF ))

ǫπ(1− k2)(k1 + 1)2
√

(ω2
3 + 1)(ω2

3 + k22 + 1)

ϑ2(0, q2)ϑ4

(

παF

2K2
, q2

)

ϑ′

1(0, q2)ϑ3

(

παF

2K2
, q2

)

and ωi, ǫi, ki are algebraic in the usual ω, etc. and αi are solutions to some elliptic

equations. . .
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• The result of a tedious calculation gives

Γreg = −T
2

lim
ǫ→0

∫ +∞

−∞

dω

2π
ln

ǫ2ω2 det8 Oǫ
F

det5 Oǫ
0 det

2 Oǫ
1 detOǫ

2

where

detOǫ
0
∼= sinh(2Kω)

ω

detOǫ
1
∼= − sinh(2K1 Z(α1))

ǫ2
√

(ω2 − k2)(ω2 − k2 + 1)(ω − 2k2 + 1)

detOǫ
2
∼= sinh(2K2 Z(α2))

ǫ2(1− k2)3/2(k1 + 1)3
√

(ω2
2 + k22)(ω

2
2 + 1)(ω2

2 + k22 + 1)

detOǫ
F
∼= 8K2

√

ω2
3 + k22 sinh(K2 Z(αF ))

ǫπ(1− k2)(k1 + 1)2
√

(ω2
3 + 1)(ω2

3 + k22 + 1)

ϑ2(0, q2)ϑ4

(

παF

2K2
, q2

)

ϑ′

1(0, q2)ϑ3

(

παF

2K2
, q2

)

and ωi, ǫi, ki are algebraic in the usual ω, etc. and αi are solutions to some elliptic

equations. . .

• For small φ we can expand

V
(1)
AdS(φ, 0) =

3

2

φ2

4π2
+

(

53

8
− 3 ζ(3)

)

φ4

16π4
+

(

223

8
− 15

2
ζ(3)− 15

2
ζ(5)

)

φ6

64π6

+

(

14645

128
− 229

8
ζ(3)− 55

4
ζ(5)− 315

16
ζ(7)

)

φ8

256π8
+O(φ10)
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φ → π limit

• V (1), V (2), V
(0)
AdS and V

(1)
AdS all have poles at φ = π

• In perturbation theory

V (φ, θ) → − λ

8π

1 + cos θ

π − φ
+

λ2

32π3

(1 + cos θ)2

π − φ
log

e

2(π − φ)
+O(λ3)

Nadav Drukker 19 Integrable Wilson loops



'

&

$

%

φ → π limit

• V (1), V (2), V
(0)
AdS and V

(1)
AdS all have poles at φ = π

• In perturbation theory

V (φ, θ) → − λ

8π

1 + cos θ

π − φ
+

λ2

32π3

(1 + cos θ)2

π − φ
log

e

2(π − φ)
+O(λ3)

• In the case of θ = 0 we get essentially the same as the antiparallel lines with

L → π − φ

V (L, λ) =



















− λ

4πL
+

λ2

8π2L
ln

T

L
+ · · · λ ≪ 1

4π2
√
λ

Γ( 14 )
4 L

(

1− 1.3359 . . .√
λ

+ · · ·
)

λ ≫ 1

• The strong coupling calculations also agree in the limit.
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Expansions in small angles

• Consider the expansion of V (φ, θ, λ) at small φ or θ

1

2

∂2

∂θ2
V (φ, θ, λ)

∣

∣

∣

φ=θ=0
= −1

2

∂2

∂φ2
V (φ, θ, λ)

∣

∣

∣

φ=θ=0
=



















λ

16π2
− λ2

384π2
+ · · · λ ≪ 1

√
λ

4π2
− 3

8π2
+ · · · λ ≫ 1
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Expansions in small angles

• Consider the expansion of V (φ, θ, λ) at small φ or θ

1

2

∂2

∂θ2
V (φ, θ, λ)

∣

∣

∣

φ=θ=0
= −1

2

∂2

∂φ2
V (φ, θ, λ)

∣

∣

∣

φ=θ=0
=



















λ

16π2
− λ2

384π2
+ · · · λ ≪ 1

√
λ

4π2
− 3

8π2
+ · · · λ ≫ 1

• This quantity was named the bremsstrahlung function B(λ)
[

Correa, Henn
Maldacena, Sever

]

• Calculates the radiation of an accelerated quark.

• Is related to small deformations of BPS Wilson loops and can be calculated exactly

B =
1

2π2
λ∂λ〈W◦〉

〈W◦〉 =
1

N
L1
N−1

(

− λ

4N

)

e
λ

8N

Nadav Drukker 20-a Integrable Wilson loops



'

&

$

%

Expansions in small angles

• Consider the expansion of V (φ, θ, λ) at small φ or θ

1

2

∂2

∂θ2
V (φ, θ, λ)

∣

∣

∣

φ=θ=0
= −1

2

∂2

∂φ2
V (φ, θ, λ)

∣

∣

∣

φ=θ=0
=



















λ

16π2
− λ2

384π2
+ · · · λ ≪ 1

√
λ

4π2
− 3

8π2
+ · · · λ ≫ 1

• This quantity was named the bremsstrahlung function B(λ)
[

Correa, Henn
Maldacena, Sever

]

• Calculates the radiation of an accelerated quark.

• Is related to small deformations of BPS Wilson loops and can be calculated exactly

B =
1

2π2
λ∂λ〈W◦〉

〈W◦〉 =
1

N
L1
N−1

(

− λ

4N

)

e
λ

8N

• See also Kolya’s talk tomorrow.
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Result so far:

Explicit expressions for these families of Wilson loops at weak and strong coupling.
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Wilson loops and integrability

• We want to apply the tools of integrability to the case of Wilson loops:

– Find a spin–chain model.

– Find the all loop scattering (and reflection) matrix

– Try to solve it exactly.

• This will allow to derive the gauge theory perturbative results from world-sheet

techniques.
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Wilson loops and integrability

• We want to apply the tools of integrability to the case of Wilson loops:

– Find a spin–chain model.

– Find the all loop scattering (and reflection) matrix

– Try to solve it exactly.

• This will allow to derive the gauge theory perturbative results from world-sheet

techniques.

• Main trick will be to start with the Wilson loop with an arbitrary insertion in it,

which will simplify the steps above and at the end remove the insertion.

• In the case of the straight line, after removing the insertion, the operator is 1/2 BPS,

so no anomalous dimension. So need to know how to treat the cusp.
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string picture

• The string dual of a Wilson loop with an insertion is an excited state of the open

string describing the Wilson loop.
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string picture

• The string dual of a Wilson loop with an insertion is an excited state of the open

string describing the Wilson loop.
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string picture

• The string dual of a Wilson loop with an insertion is an excited state of the open

string describing the Wilson loop.

=⇒
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string picture

• The string dual of a Wilson loop with an insertion is an excited state of the open

string describing the Wilson loop.

=⇒

• Study the spectrum of open string states all satisfying the same boundary conditions.
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• An insertion of ZJ is described by a string ending along the same curve on the

boundary but in the bulk of space rotating around the equator of S5 with

momentum J .

• An excitation traveling along this string will not know that it’s an open string and not

the usual TrZJ vacuum.
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• An insertion of ZJ is described by a string ending along the same curve on the

boundary but in the bulk of space rotating around the equator of S5 with

momentum J .

• An excitation traveling along this string will not know that it’s an open string and not

the usual TrZJ vacuum.

• Once it gets to the end of the string we should impose boundary conditions.
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• An insertion of ZJ is described by a string ending along the same curve on the

boundary but in the bulk of space rotating around the equator of S5 with

momentum J .

• An excitation traveling along this string will not know that it’s an open string and not

the usual TrZJ vacuum.

• Once it gets to the end of the string we should impose boundary conditions.

Gauge theory picture

We take the cusped Wilson loop with an adjoint

valued operator like ZJ at the cusp.

π − φ

O ∼ ZY Z · · ·ZZ
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• It is clear how to see the appearance of the spin–chain by considering the compact

operator in the gauge theory

• In this case the classical dimension is 5.
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• It is clear how to see the appearance of the spin–chain by considering the compact

operator in the gauge theory

• In this case the classical dimension is 5.

• The bulk hamiltonian is like the usual Minahan-Zarembo spin–chain (Beisert S-matrix

S
cd
ab(p1, p2)⊗ S

ċḋ
ȧḃ
(p1, p2) ).

• Boundary interaction has to be studied separately.
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• It is clear how to see the appearance of the spin–chain by considering the compact

operator in the gauge theory

• In this case the classical dimension is 5.

• The bulk hamiltonian is like the usual Minahan-Zarembo spin–chain (Beisert S-matrix

S
cd
ab(p1, p2)⊗ S

ċḋ
ȧḃ
(p1, p2) ).

• Boundary interaction has to be studied separately.

• The two boundaries interact through wrapping effects at O(g2(J+1)).

• For J = 0 this is at one-loop.
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All loop reflection matrix and a twist

• The one loop bulk hamiltonian is the same as for closed spin–chains

• The boundary reflection matrix was calculated from Feynman graphs only in the

SU(2) sector.
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All loop reflection matrix and a twist

• The one loop bulk hamiltonian is the same as for closed spin–chains

• The boundary reflection matrix was calculated from Feynman graphs only in the

SU(2) sector.

• To do it to all loops we should use the symmetry:

psu(2, 2|4) −→
ZJ vacuum

psu(2|2)L × psu(2|2)R

boundary ↓ ↓

osp(4∗|4) −→ psu(2|2)D

• A single boundary breaks the symmetry to a diagonal psu(2|2).
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All loop reflection matrix and a twist

• The one loop bulk hamiltonian is the same as for closed spin–chains

• The boundary reflection matrix was calculated from Feynman graphs only in the

SU(2) sector.

• To do it to all loops we should use the symmetry:

psu(2, 2|4) −→
ZJ vacuum

psu(2|2)L × psu(2|2)R

boundary ↓ ↓

osp(4∗|4) −→ psu(2|2)D

• A single boundary breaks the symmetry to a diagonal psu(2|2).
• By the usual argument, the boundary

reflection matrix should have the same

matrix structure as the bulk one

R
ḃb
aȧ(p) = R0(p)Ŝ

ḃb
aȧ(p,−p)

• It replaces psu(2|2)L ↔ psu(2|2)R labels.

-p

-p -p

-p

p

pp

p
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• Need to determine

R0(p) = σB(p)/σ(p,−p).

• Like the crossing relation in the

bulk, there is a boundary

“crossing-unitarity equation”

R(p) = S(p,−p)Rc(p̄)
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• Need to determine

R0(p) = σB(p)/σ(p,−p).

• Like the crossing relation in the

bulk, there is a boundary

“crossing-unitarity equation”

R(p) = S(p,−p)Rc(p̄)

• This translates to the conditions on σB

σB(p)σB(p̄) =
x− + 1/x−

x+ + 1/x+
, σB(p)σB(p̄) = 1 .

where the Joukowsky variables are a solution of

eip =
x+

x−
, x+ +

1

x+
− x− − 1

x−
=

1

g
.
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• Need to determine

R0(p) = σB(p)/σ(p,−p).

• Like the crossing relation in the

bulk, there is a boundary

“crossing-unitarity equation”

R(p) = S(p,−p)Rc(p̄)

• This translates to the conditions on σB

σB(p)σB(p̄) =
x− + 1/x−

x+ + 1/x+
, σB(p)σB(p̄) = 1 .

where the Joukowsky variables are a solution of

eip =
x+

x−
, x+ +

1

x+
− x− − 1

x−
=

1

g
.

• The solution which matches the all consistency requirements is

σB(z) =
1 + 1/(x−)2

1 + 1/(x+)2
e−iχB(x+)+iχB(x−)

where

χB(x) = −i

∮

dz

2πi

1

x− z
log

sinh 2πg(z + 1/z)

2πg(z + 1/z)
.
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• So far only right boundary. What about the left?
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• So far only right boundary. What about the left?

• The left boundary is essentially the same.

• The choice of diagonal subgroup psu(2|2)L × psu(2|2)R → psu(2|2)D′ may be different.

• Conjugate the reflection matrix by a twist matrix G acting on the psu(2|2)L labels

G = diag(eiθ/2, e−iθ/2, eiφ/2, e−iφ/2)
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• So far only right boundary. What about the left?

• The left boundary is essentially the same.

• The choice of diagonal subgroup psu(2|2)L × psu(2|2)R → psu(2|2)D′ may be different.

• Conjugate the reflection matrix by a twist matrix G acting on the psu(2|2)L labels

G = diag(eiθ/2, e−iθ/2, eiφ/2, e−iφ/2)

• This is all the information needed to understand the spectrum of asymptotically large

insertions into the Wilson loop.

p1

p1p1

p1p1

p2 p2

p2p2

−p1

−p1−p1

−p1

−p2

−p2
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• So far only right boundary. What about the left?

• The left boundary is essentially the same.

• The choice of diagonal subgroup psu(2|2)L × psu(2|2)R → psu(2|2)D′ may be different.

• Conjugate the reflection matrix by a twist matrix G acting on the psu(2|2)L labels

G = diag(eiθ/2, e−iθ/2, eiφ/2, e−iφ/2)

• This is all the information needed to understand the spectrum of asymptotically large

insertions into the Wilson loop.

p1

p1p1

p1p1

p2 p2

p2p2

−p1

−p1−p1

−p1

−p2

−p2

• But not the case J = 0 . . .
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Wrapping effects and the quark-antiquark potential

• One can derive a set of boundary thermodynamic Bethe ansatz equations for this open

spin–chain.

• This can be simplified in the small angle limit, where the full answer was reproduced.
[

Correa, Maldacen,
Sever

][

Gromov
Sever

]

• They are the same as the usual TBA equations with several small modifications:

– The Y functions are related by reflection Ya,s(−u) = Ya,−s(u)

– There are chemical potentials dependent on φ and θ.

– There is a complicated driving term for the massive Ya,0 nodes (aka YQ).

• The Y -system equations are unmodified.

– Analytic properties of the functions are different (determined by the asymptotic

solution).

Nadav Drukker 29 Integrable Wilson loops



'

&

$

%

• To reproduce the one loop answer it is enough to consider Lüscher-like corrections.

• This requires to calculate the eigenvalues of the transfer matrix

p

pp −p

−p−p

p1p1 p2p2 −p1−p2
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• To reproduce the one loop answer it is enough to consider Lüscher-like corrections.

• This requires to calculate the eigenvalues of the transfer matrix

p

pp −p

−p−p

p1p1 p2p2 −p1−p2

• by repeated use of the Yang-Baxter equation this simplifies to

ppp

−p−p−p

p1p1 p2p2 −p1−p2

• That is just the product of two twisted psu(2|2) transfer matrices.
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• On the ZJ vacuum this is for the Qs bound state

Tφ,θ
Q (p) = sTr

[

R
(R)(p)R(L)c(p̄)

]

= sTr
[

R
(R)(p)GR

(R)c(−p̄)G
]

= σB(p)σB(−p̄)

(

x−

x+

)2

(sTrG)2
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• On the ZJ vacuum this is for the Qs bound state

Tφ,θ
Q (p) = sTr

[

R
(R)(p)R(L)c(p̄)

]

= sTr
[

R
(R)(p)GR

(R)c(−p̄)G
]

= σB(p)σB(−p̄)

(

x−

x+

)2

(sTrG)2

• Simple group theory gives

(sTrQ G)
2
= 4(cosφ− cos θ)2

sin2 Qφ

sin2 φ

And the Lüscher-Bajnok-Janik formula is

δE ≈ − 1

2π

∞
∑

Q=1

∫

∞

0

dp̃ log
(

1 + T
(φ,θ)
Q (p̃)e−2JẼQ

)
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• On the ZJ vacuum this is for the Qs bound state

Tφ,θ
Q (p) = sTr

[

R
(R)(p)R(L)c(p̄)

]

= sTr
[

R
(R)(p)GR

(R)c(−p̄)G
]

= σB(p)σB(−p̄)

(

x−

x+

)2

(sTrG)2

• Simple group theory gives

(sTrQ G)
2
= 4(cosφ− cos θ)2

sin2 Qφ

sin2 φ

And the Lüscher-Bajnok-Janik formula is

δE ≈ − 1

2π

∞
∑

Q=1

∫

∞

0

dp̃ log
(

1 + T
(φ,θ)
Q (p̃)e−2JẼQ

)

• Normally for small g (or large J) can expand the logarithm

δE ≈ 1

2π

∞
∑

Q=1

∫

∞

0

dp̃ T
(φ,θ)
Q (p̃)e−2JẼQ

For J = 0 the answer will be proportional to
g4(cosφ− cos θ)2

sin2 φ
. . .
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• Crucial fact is that the dressing factor has a double pole at p̃ = 0

σB(p̃)σB(− ¯̃p) = e2i(χB(x+)+χB(x−)) (2πg)2(x+ + 1/x+)(x− + 1/x−)

sinh(2πg(x+ + 1/x+)) sinh(2πg(x− + 1/x−))

= e2i(χB(x+)+χB(x−)) (2π)
2(u2 +Q2/4)

sinh2(2πu)
∼ Q2

p̃2

• Then using
∫

∞

0

dp̃ log

(

1 +
c

p̃2

)

= π
√
c ,
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• Crucial fact is that the dressing factor has a double pole at p̃ = 0

σB(p̃)σB(− ¯̃p) = e2i(χB(x+)+χB(x−)) (2πg)2(x+ + 1/x+)(x− + 1/x−)

sinh(2πg(x+ + 1/x+)) sinh(2πg(x− + 1/x−))

= e2i(χB(x+)+χB(x−)) (2π)
2(u2 +Q2/4)

sinh2(2πu)
∼ Q2

p̃2

• Then using
∫

∞

0

dp̃ log

(

1 +
c

p̃2

)

= π
√
c ,

• The residue is
√

T res
Q e−2JẼQ = 2

cosφ− cos θ

sinφ
sinQφ (−1)Q

[

(4g2)J+1

Q2J+1
− 2(J + 2)

(4g2)J+2

Q2J+3
+ · · ·

]

• so

δE ≈ −(4g2)J+1 cosφ− cos θ

sinφ

∞
∑

Q=1

(−1)Q sinQφ

Q2J+1

= − (4g2)J+1

2i

cosφ− cos θ

sinφ

(

Li2J+1(−eiφ)− Li2J+1(−e−iφ)
)
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For J = 0

δE ≈ −4g2

2i

cosφ− cos θ

sinφ

(

Li1(−eiφ)− Li1(−e−iφ)
)

= 2g2i
cosφ− cos θ

sinφ

(

− log(1 + eiφ) + log(1 + e−iφ)
)

= 2g2
cosφ− cos θ

sinφ
φ+O(g4)
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For J = 0

δE ≈ −4g2

2i

cosφ− cos θ

sinφ

(

Li1(−eiφ)− Li1(−e−iφ)
)

= 2g2i
cosφ− cos θ

sinφ

(

− log(1 + eiφ) + log(1 + e−iφ)
)

= 2g2
cosφ− cos θ

sinφ
φ+O(g4)

• This integrability calculation is in exact agreement with the one loop perturbative

calculation.
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Summary

• Generalization I: A two–parameter family of Wilson loops interpolating between the

line and the antiparallel lines.

• They are no more complicated than the antiparallel lines. Explicit results at 3 loops in

perturbation theory and classical and 1 loop in string theory.

• These observables interesting in their own right: Cusp anomalous dimension,

bremstrahlung function, renormalization of general Wilson loops.
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Summary

• Generalization I: A two–parameter family of Wilson loops interpolating between the

line and the antiparallel lines.

• They are no more complicated than the antiparallel lines. Explicit results at 3 loops in

perturbation theory and classical and 1 loop in string theory.

• These observables interesting in their own right: Cusp anomalous dimension,

bremstrahlung function, renormalization of general Wilson loops.

• Generalization II: Including local operator leads to open spin–chain model.

• Surprisingly simple open spin–chain model, where the boundary reflection can be

diagonalized.

• A set of TBA equations which calculate all these quantities.
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• The answer is not very different from that of the usual spectral problem.

• For Konishi wrapping started at 4 loop order. The cusped Wilson loop is given purely

by wrapping from one loop on.

• Other interesting observables given by similar spin–chains?
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When I talked about my paper with Valentina a year ago I would end with the question

Will there be a gauge theory derivation of the strong coupling potential:

V (L, λ) =
4π2

√
λ

Γ( 14 )
4 L
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When I talked about my paper with Valentina a year ago I would end with the question

Will there be a gauge theory derivation of the strong coupling potential:

V (L, λ) =
4π2

√
λ

Γ( 14 )
4 L

We are very close to answering Yes!
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The end
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