The quark anti-quark potential in $\mathcal{N}=4 \mathrm{SYM}$ from a TBA equation

Diego H. Correa

Universidad Nacional de La Plata - Argentina

Based on arXives: $1202.4455,1203.1019$ and 1203.1913
In collaboration with: J. Henn, J. Maldacena and A. Sever

Outline

- $q \bar{q}$ potential from the anomalous dimension of a Wilson loop with a cusp

Outline

- $q \bar{q}$ potential from the anomalous dimension of a Wilson loop with a cusp
- Cusp anomalous dimension using integrability

Outline

- $q \bar{q}$ potential from the anomalous dimension of a Wilson loop with a cusp
- Cusp anomalous dimension using integrability Indirect method:
(1) Insert a chain of fields of length L at a point in the WL
(2) WL sets open boundaries: determine the reflection matrix R_{b}^{a}
(3) Global rotation of one of the R_{b}^{a} to introduce cusp angles
(9) TBA to incorporate finite size effects
(6) $L \rightarrow 0$ limit of Casimir energy gives the cusp anomalous dimension

Outline

- $q \bar{q}$ potential from the anomalous dimension of a Wilson loop with a cusp
- Cusp anomalous dimension using integrability Indirect method:
(1) Insert a chain of fields of length L at a point in the WL
(2) WL sets open boundaries: determine the reflection matrix R_{b}^{a}
(3) Global rotation of one of the R_{b}^{a} to introduce cusp angles
(9) TBA to incorporate finite size effects
(6) $L \rightarrow 0$ limit of Casimir energy gives the cusp anomalous dimension

This is valid in the planar limit of $\mathcal{N}=4$ SYM and for any value of the 't Hooft coupling λ.

Introduction

- Quark-antiquark potential

$$
\begin{aligned}
& \text { for } T \gg R \\
& e^{-V_{q \bar{q}}(R) T}=\left\langle\operatorname{Tr}\left[P e^{i \oint A \cdot d x}\right]\right\rangle
\end{aligned}
$$

- Cusp anomalous dimension [Polyakov 80]

$$
e^{-\Gamma_{\text {cusp }}(\phi) \log \left(\frac{\Lambda_{\mathrm{IR}}}{\Lambda_{\mathrm{UV}}}\right)}=\left\langle\operatorname{Tr}\left[P e^{i \oint A \cdot d x}\right]\right\rangle
$$

- $\Gamma_{\text {cusp }}(\phi)$ gives the quark anti-quark potential on S^{3} for a configuration which is separated by an angle $\delta=\pi-\phi$.

Plane to cylinder map $(\log r=t)$

$$
\begin{gathered}
\langle W\rangle \simeq e^{-\log \left(\frac{\Lambda_{1 R}}{\Lambda_{u V}}\right) \Gamma_{\text {cusp }}}=e^{-T \Gamma_{\text {cusp }}} \Rightarrow \Gamma_{\text {cusp }}=V_{q \bar{q}} \\
\delta \rightarrow 0 \text { gives } V_{q \bar{q}} \text { in flat space }
\end{gathered}
$$

- $\Gamma_{\text {cusp }}(\phi)$ gives the quark anti-quark potential on S^{3} for a configuration which is separated by an angle $\delta=\pi-\phi$.

Plane to cylinder map $(\log r=t)$

$$
\begin{gathered}
\langle W\rangle \simeq e^{-\log \left(\frac{\Lambda_{1 R}}{\Lambda_{u V}}\right) \Gamma_{\text {cusp }}}=e^{-T \Gamma_{\text {cusp }}} \Rightarrow \Gamma_{\text {cusp }}=V_{q \bar{q}} \\
\delta \rightarrow 0 \text { gives } V_{q \bar{q}} \text { in flat space }
\end{gathered}
$$

- In $\mathcal{N}=4$ SYM, the locally susy Wilson loop also has a coupling to the scalars, specified by \vec{n}

$$
W \sim \operatorname{Tr}\left[P e^{i \oint A \cdot d x+\oint|d x| \vec{n} \cdot \vec{\phi}}\right]
$$

We can take \vec{n} and \vec{n}^{\prime} for the 2 lines of the cusp. This introduces an internal cusp angle $\cos \theta=\vec{n} \cdot \vec{n}^{\prime}$.

Open chain spectral problem

- WL with fields inserted regarded as open spin chain states
- Computing $\left\langle W\left[\mathcal{O}(\tau) \mathcal{O}\left(\tau^{\prime}\right)\right]\right\rangle$ perturbatively leads to a mixing problem which is equivalent to some open spin chain spectral problem,

$$
\left\langle W\left[\mathcal{O}_{A}^{\text {ren }}(\tau) \mathcal{O}_{B}^{\text {ren }}\left(\tau^{\prime}\right)\right]\right\rangle=\frac{\delta_{A B}}{\left|\tau-\tau^{\prime}\right|^{2 \Delta_{A}}}
$$

- For instance, to 1-loop in an su(2) sector, an integrable open XXX chain is obtained [Drukker,Kawamoto]

Open chain spectral problem

- WL with fields inserted regarded as open spin chain states
- Computing $\left\langle W\left[\mathcal{O}(\tau) \mathcal{O}\left(\tau^{\prime}\right)\right]\right\rangle$ perturbatively leads to a mixing problem which is equivalent to some open spin chain spectral problem,

$$
\left\langle W\left[\mathcal{O}_{A}^{r e n}(\tau) \mathcal{O}_{B}^{r e n}\left(\tau^{\prime}\right)\right]\right\rangle=\frac{\delta_{A B}}{\left|\tau-\tau^{\prime}\right|^{2 \Delta_{A}}}
$$

- For instance, to 1-loop in an su(2) sector, an integrable open XXX chain is obtained [Drukker,Kawamoto]
- This problem is argued to be integrable to all-loop order:

Open chain spectral problem

- WL with fields inserted regarded as open spin chain states
- Computing $\left\langle W\left[\mathcal{O}(\tau) \mathcal{O}\left(\tau^{\prime}\right)\right]\right\rangle$ perturbatively leads to a mixing problem which is equivalent to some open spin chain spectral problem,

$$
\left\langle W\left[\mathcal{O}_{A}^{\text {ren }}(\tau) \mathcal{O}_{B}^{\text {ren }}\left(\tau^{\prime}\right)\right]\right\rangle=\frac{\delta_{A B}}{\left|\tau-\tau^{\prime}\right|^{2 \Delta_{A}}}
$$

- For instance, to 1-loop in an su(2) sector, an integrable open XXX chain is obtained [Drukker,Kawamoto]
- This problem is argued to be integrable to all-loop order: Find all-loop reflection matrix \& check BYB is satisfied

Wilson loop reflection matrix

- Magnons are fundametals of $S U(2 \mid 2)_{L} \times S U(2 \mid 2)_{R}$

a is a fund. of $S U(2 \mid 2)_{L}$ \dot{a} is a fund. of $S U(2 \mid 2)_{R}$
- Reflection matrix is fixed with the boundary/vacuum symm. $S U(2 \mid 2)_{D}=S U(2 \mid 2)^{2} \cap \operatorname{OSp}\left(4^{*} \mid 4\right) \begin{gathered}\text { CCorrea, Young], [Correa, Regelskis, Young] } \\ {[\text { Correa, Maldacena, } \text { Sever }][\text { [rukker] }]}\end{gathered}$

1 Bulk magnon $\equiv 1$ pair of magnons of $S U(2 \mid 2)_{D}$

$$
R_{c \dot{c}}^{a \dot{a}}(p)=\frac{1}{\sigma_{B}(p)} \frac{1}{\sigma(p,-p)} \hat{S}_{c \dot{c}}^{a \dot{a}}(p,-p)
$$

Boundary Yang-Baxter condition

Boundary Yang-Baxter condition

Up to some overall scalar factors, the boundary Yang-Baxter condition looks like a succession of bulk scattering factors

Thus, bulk Yang-Baxter condition ensures boundary Yang-Baxter condition for the Wilson loop reflection matrix

Wilson loop boundary dressing phase

- Crossing symmetry constrains the unknown function [Janik 06] Crossing: particle $(E, p) \leftrightarrow$ anti-particle $(-E,-p)$

Wilson loop boundary dressing phase

- Crossing symmetry constrains the unknown function [Janik 06] Crossing: particle $(E, p) \leftrightarrow$ anti-particle $(-E,-p)$

- There is also a boundary crossing condition

$$
R(p) \cdot S(p,-\bar{p}) \cdot R(\bar{p})=\mathbb{I}
$$

This imposes a condition on σ_{B}

$$
\left(16 \pi^{2} g^{2}=\lambda\right)
$$

$$
\sigma_{B}(p) \sigma_{B}(\bar{p})=\frac{x^{-}+\frac{1}{x^{-}}}{x^{+}+\frac{1}{x^{+}}} \quad \begin{array}{ll}
x^{ \pm}:=x\left(u \pm \frac{i}{2}\right) \\
x(u)+\frac{1}{x(u)}=\frac{u}{g}
\end{array}
$$

- The solution to this crossing equation is not unique
- Applying a method proposed for the bulk dressing factor [Volin] \& [Volin,Vieira], we found the following solution [Correa,Maldacena,Sever] \& [Drukker]

$$
\begin{array}{rlrl}
\sigma_{B} & =e^{i \chi\left(x^{+}\right)-i \chi\left(x^{-}\right)} \\
\chi(x) & =\Phi(x)=\oint \frac{d z}{2 \pi} \frac{1}{z-x} \log \left\{\frac{\sinh \left[2 \pi g\left(z+\frac{1}{z}\right)\right]}{2 \pi g\left(z+\frac{1}{z}\right)}\right\}, & |x|>1 \\
\chi(x) & =\Phi(x)-i \log \left\{\frac{\sinh \left[2 \pi g\left(x+\frac{1}{x}\right)\right]}{2 \pi g\left(x+\frac{1}{x}\right)}\right\}, & |x|<1
\end{array}
$$

which passes a few non-trivial checks

Strong coupling dressing phase check

In the strong coupling limit, (when $x^{ \pm}=e^{ \pm i \frac{i p}{2}}$), the boundary scattering phase we have proposed:

$$
R_{0}(p)=\frac{1}{\sigma_{B}(p)} \frac{1}{\sigma(p,-p)}=e^{i \delta_{\mathrm{R}}(p)}
$$

goes as

$$
\delta_{\mathrm{R}}(p)=-\frac{\sqrt{\lambda}}{\pi} \cos \frac{p}{2} \log \left(\frac{1-\sin \frac{p}{2}}{1+\sin \frac{p}{2}}\right)-\frac{2 \sqrt{\lambda}}{\pi} \cos \frac{p}{2} \log \cos \frac{p}{2}
$$

This coincides exactly with the classical string computation.
One computes the time delay Δt suffered for magnon during the reflection. The time delay is related to the derivative of the reflection phase with respect to the energy [Jackiw,Woo 75]

$$
\Delta t=\frac{\partial \delta}{\partial \epsilon}
$$

Now that we know the reflection matrix, let's continue with the steps enumerated in the outline
(3) Introduce cusps: globally rotate the right reflection matrix

$$
R_{c}^{a}(\phi)=m_{b}^{a}(\phi) R_{c}^{b}
$$

(9) Finite L corrections \rightarrow Thermodynamic Bethe ansatz
(5) Focus on the ground state in the limit $L \rightarrow 0$

The limit $L \rightarrow 0$ of the Casimir energy gives the cusp anomalous dimension

$$
\Gamma_{\text {cusp }}=\lim _{L \rightarrow 0} \mathcal{E}_{0}(L)
$$

Boundary Thermodynamic Bethe Ansatz $\begin{gathered}\text { [Zamoloddchikov 90] } \\ \text { [Leclair, Mussardo, }\end{gathered}$
 [LeClair, Mussardo, Saleur, Skorik 95]

$$
\begin{aligned}
& \text { Physical strip }\left\{\begin{array}{l}
p \leftrightarrow i \tilde{E} \\
E \leftrightarrow i \tilde{p}
\end{array}\right\} \text { Mirror Theory } \\
& \frac{1}{T}=\beta \\
& Z_{B_{l}, B_{r}}^{\text {open }}=\operatorname{Tr}_{\text {open }}\left[e^{\left.-\beta H_{B_{l}, B_{r}}^{\text {open }}\right]}=\left\langle B_{l}\right| e^{-L H_{\text {closed }}}\left|B_{r}\right\rangle\right.
\end{aligned}
$$

Boundary Thermodynamic Bethe Ansatz ${ }_{[\text {[Leclair, Mussardo, }}^{\text {[Zamoleur, Skorik 95] }}$

$$
\begin{aligned}
& \text { Physical strip }\left\{\begin{array}{l}
p \leftrightarrow i \tilde{E} \\
E \leftrightarrow i \tilde{p}
\end{array}\right\} \text { Mirror Theory } \\
& \frac{1}{T}=\beta \\
& Z_{B_{l}, B_{r}}^{\text {open }}=\operatorname{Tr}_{\text {open }}\left[e^{\left.-\beta H_{B_{1}, B_{r}}^{\text {open }}\right]}=\left\langle B_{\mid}\right| e^{-L H_{\text {closed }} \mid}\left|B_{r}\right\rangle\right.
\end{aligned}
$$

- Analytic continuation of $R(p)$ gives the probability of emitting pairs of particles from the boundary state [Ghoshal, Zamolodchivov 93]

$$
|B\rangle=\exp \left(\int_{0}^{\infty} \frac{d \tilde{p}}{2 \pi} K^{a, b}(\tilde{p}) a_{a}^{\dagger}(-\tilde{p}) a_{b}^{\dagger}(\tilde{p})\right)|0\rangle=\exp \left(\int_{0}^{\infty} \frac{d \tilde{p}_{5}}{2 \pi} \frac{Z}{}\right)|0\rangle
$$

$$
\text { with } K^{a, b}(\tilde{p})=\left[R^{-1}(\tilde{p})\right]_{d}^{a} \mathcal{C}^{d, b} \quad \tilde{p} \text { has mirror kinematics }
$$

Boundary Thermodynamic Bethe Ansatz ${ }_{\left[\begin{array}{l}\text { [Lamolodachikov 90] }\end{array}\right], \text { Mussardo, Saleur, Skorik 95] }}$

$$
\begin{aligned}
& \text { Physical strip }\left\{\begin{array}{l}
p \leftrightarrow i \tilde{E} \\
E \leftrightarrow i \tilde{p}
\end{array}\right\} \text { Mirror Theory } \\
& \frac{1}{T}=\beta \\
& Z_{B_{l}, B_{r}}^{\text {open }}=\operatorname{Tr}_{\text {open }}\left[e^{\left.-\beta H_{B_{l}, B_{r}}^{\text {open }}\right]}=\left\langle B_{l}\right| e^{-L H_{\text {closed }}}\left|B_{r}\right\rangle\right.
\end{aligned}
$$

- Analytic continuation of $R(p)$ gives the probability of emitting pairs of particles from the boundary state [Ghoshal, Zamolodchivov 93]

$$
\begin{aligned}
|B\rangle= & \exp \left(\int_{0}^{\infty} \frac{d \tilde{p}}{2 \pi} K^{a, b}(\tilde{p}) a_{a}^{\dagger}(-\tilde{p}) a_{b}^{\dagger}(\tilde{p})\right)|0\rangle=\exp \left(\int_{0}^{\infty} \frac{d \tilde{p}_{2}}{2 \pi} \frac{\lambda}{}\right)|0\rangle \\
& \text { with } K^{a, b}(\tilde{p})=\left[R^{-1}(\tilde{p})\right]_{d}^{a} \mathcal{C}^{d, b} \quad \tilde{p} \text { has mirror kinematics }
\end{aligned}
$$

- In the $\beta \rightarrow \infty$ limit,
(i) Partition function \rightarrow the ground state energy $Z_{B_{l}, B_{r}}^{\text {open }} \sim e^{-\beta \mathcal{E}_{0}(L)}$
(ii) Bethe Ansatz in the mirror theory becomes exact

Partition Function in the mirror channel

$$
e^{-\beta \mathcal{E}_{0}(L)} \sim\left\langle B_{l}\right| e^{-L H_{\text {closed }}}\left|B_{r}\right\rangle \quad \text { for } \beta \rightarrow \infty
$$

- Still not straightforward. $|B\rangle$ is written as superpositions of $a^{\dagger}(\tilde{p})$ which are not eigenstates of $H_{\text {closed }}$ (unless mirror S-matrix were trivial)
- Lüscher-type correction gives the leading finite size correction and can be obtained by regarding superpositions of $a^{\dagger}(\tilde{p})$ as eigenstates of $H_{\text {closed }}$

The partition function is reduced to the overlap of the 2-particle, 4-particles,... components of $|B\rangle$

$$
1+\int_{0}^{\infty} \frac{d \tilde{p}}{2 \pi} e^{-2 L \tilde{E}(\tilde{p})}-\tilde{\tilde{p}} \tilde{\tilde{p}}+\cdots
$$

This leads to［LeClair，Mussardo，Saleur，Skorik 95］

$$
\mathcal{E}_{0}(L) \sim-\int_{0}^{\infty} \frac{d \tilde{p}}{2 \pi} \log \left\{1+e^{-2 L \tilde{E}(\tilde{p})} \operatorname{Tr}[K(\tilde{p}) \bar{K}(\tilde{p})]\right\}
$$

This can be expanded either as

$$
\mathcal{E}_{0}(L) \sim-\int_{0}^{\infty} \frac{d \tilde{p}}{2 \pi} e^{-2 L \tilde{E}(\tilde{p})} \operatorname{Tr}[K(\tilde{p}) \bar{K}(\tilde{p})]+\mathcal{O}\left(e^{-4 L \tilde{E}(0)}\right)
$$

or as

$$
\mathcal{E}_{0}(L) \sim-\frac{1}{2} e^{-L \tilde{E}(0)} \sqrt{\left.\tilde{p}^{2} \operatorname{Tr}[K(\tilde{p}) \bar{K}(\tilde{p})]\right|_{\tilde{p}=0}}+\mathcal{O}\left(e^{-2 L \tilde{E}(0)}\right) \text { 美 美 会 }
$$

when $K \bar{K}$ has a double pole at $\tilde{p}=0$
Our dressing phase σ_{B} produces such pole，which we will see is crucial for getting the correct cusp anomalous dimension

Boundary TBA derivation

- The mirror system is the same as the one obtained in the periodic case. [Arutyunov, Frolov], [Bombardelli, Fioravanti, Tateo] [Gromov, Kazakov, Kozak, Vieira]
The difference is that now we overlap the Bethe eigenstates between the boundary states rather than tracing over them
- Same mirror part. \Rightarrow same Y-functions $Y_{a, s}\left(\frac{\text { dens. of particles }}{\text { dens. of holes }}\right)$

Boundary TBA derivation

- The mirror system is the same as the one obtained in the periodic case. [Arutyunov, Frolov], [Bombardelli, Fioravanti, Tateo] [Gromov, Kazakov, Kozak, Vieira]
The difference is that now we overlap the Bethe eigenstates between the boundary states rather than tracing over them
- Same mirror part. \Rightarrow same Y-functions $Y_{a, s}\left(\frac{\text { dens. of particles }}{\text { dens. of holes }}\right)$
- Carrying mom. particles come in pairs with $(-\tilde{p}, \tilde{p})$ $\Rightarrow Y_{a, 0}$ is needed for $u_{4}>0$ only ($\tilde{p}>0$)
- Boundary state is invariant under $S U(2 \mid 2)_{D}$. If roots u_{1}, u_{2}, u_{3} appear, also $-u_{7},-u_{6},-u_{5}$ appear

$$
\Rightarrow Y_{a,-s}(u)=Y_{a, s}(-u)
$$

Boundary TBA derivation

- The mirror system is the same as the one obtained in the periodic case. [Arutyunov, Frolov], [Bombardelli, Fioravanti, Tateo] The difference is that now we overlap the Bethe eigenstates between the boundary states rather than tracing over them
- Same mirror part. \Rightarrow same Y-functions $Y_{a, s}$ ($\left.\frac{\text { dens. of particles }}{\text { dens. of holes }}\right)$
- Carrying mom. particles come in pairs with $(-\tilde{p}, \tilde{p})$ $\Rightarrow Y_{a, 0}$ is needed for $u_{4}>0$ only ($\tilde{p}>0$)
- Boundary state is invariant under $S U(2 \mid 2)_{D}$.

If roots u_{1}, u_{2}, u_{3} appear, also $-u_{7},-u_{6},-u_{5}$ appear

$$
\Rightarrow Y_{a,-s}(u)=Y_{a, s}(-u)
$$

- Rotation: acts diagonally on the impurities of each level \Rightarrow cusp angles ϕ and θ enter as chemical potentials for the \neq magnon bound states
- Boundary dressing factor: σ_{B} enter as a u_{4} dependent chemical potential for the $Y_{a, 0}$

Ground state TBA equations

$$
\begin{aligned}
& \log Y_{1,1}=i \theta+i \phi+K_{m-1} * \log \frac{1+\bar{Y}_{1, m}}{1+Y_{m, 1}}+\mathcal{R}_{1 a}^{(01)} * \log \left(1+Y_{a, 0}\right) \\
& \log \bar{Y}_{2,2}=i \theta+i \phi+K_{m-1} * \log \frac{1+\bar{Y}_{1, m}}{1+Y_{m, 1}}+\mathcal{B}_{1 a}^{(01)} * \log \left(1+Y_{a, 0}\right) \\
& \log \bar{Y}_{1, s}=2 i(s-1) \theta-K_{s-1, t-1} * \log \left(1+\bar{Y}_{1, t}\right)-K_{s-1} * \log \frac{1+Y_{1,1}}{1+\bar{Y}_{2,2}} \\
& \log Y_{a, 1}=i 2(a-1) \phi-K_{a-1, b-1} * \log \left(1+Y_{b, 1}\right)-K_{a-1} * \log \frac{1+Y_{1,1}}{1+\bar{Y}_{2,2}}+ \\
& \quad+\left[\mathcal{R}_{a b}^{(01)}+\mathcal{B}_{a-2, b}^{(01)}\right] * \log \left(1+Y_{b, 0}\right)
\end{aligned}
$$

$$
\log Y_{a, 0}=-i 2 a \phi+\log \left[\sigma_{B} \bar{\sigma}_{B}\right]-2 L \tilde{E}_{a}(u)+\left[2 \mathcal{S}_{a b}-\mathcal{R}_{a b}^{(11)}+\mathcal{B}_{a b}^{(11)}\right] * \log \left(1+Y_{b, 0}\right)
$$

$$
+2\left[\mathcal{R}_{a b}^{(10)}+\mathcal{B}_{a, b-2}^{(10)}\right]_{\mathrm{sy}}^{*} \underset{\mathrm{~m}}{*} \log \left(1+Y_{b, 1}\right)+2 \mathcal{R}_{a 1}^{(10)} \operatorname{sym}_{\mathrm{m}}^{*} \log \left(1+Y_{1,1}\right)-2 \mathcal{B}_{a 1}^{(10)}{ }_{\mathrm{sym}}^{*} \log \left(1+\bar{Y}_{2,2}\right)
$$

- Same kernels as in periodic case TBA. $\quad \bar{Y}_{a, s}=1 / Y_{a, s}$
- Apart from the folding symmetry and the boundary dressing factor σ_{B}, they are similar to the twisted boundary conditions TBA equations,

[^0]
Ground state TBA equations

$$
\begin{aligned}
& \log Y_{1,1}=i \theta+i \phi+K_{m-1} * \log \frac{1+\bar{Y}_{1, m}}{1+Y_{m, 1}}+\mathcal{R}_{\text {ra }}^{(01)} \\
& \log \bar{Y}_{2,2}=i \theta+i \phi+K_{m-1} * \log \frac{1+\bar{Y}_{1, m}}{1+Y_{m, 1}}+\mathcal{B}_{10}^{(01)} \log \left(1+\Psi_{a, 0}\right) \\
& \log \bar{Y}_{1, s}=2 i(s-1) \theta-K_{s-1, t-1} * \log \left(1+\bar{Y}_{1, t}\right)-K_{s-1} * \log \frac{1+Y_{1,1}}{1+\bar{Y}_{2,2}} \\
& \log Y_{a, 1}=i 2(a-1) \phi-K_{a-1, b-1} * \log \left(1+Y_{b, 1}\right)-K_{a-1} * \log \frac{1+Y_{1,1}}{1+\bar{Y}_{2,2}}+ \\
& +\left[\mathcal{R}_{a b}^{(01)}-\mathcal{D}_{a-2, b}^{(01)}\right] \quad-\log (\underbrace{}_{b, 0}) \\
& \log Y_{a, 0}=-i 2 a \phi+\log \left[\sigma_{B} \bar{\sigma}_{B}\right]-2 L \tilde{E}_{a}(u)+\left[\begin{array}{ccc}
2 \mathcal{S}_{a \sim} & \left.\mathcal{R}_{a b}^{(11)}-\mathcal{D}_{a b}^{(11)}\right]
\end{array}\right]\left(Y_{b, 0}\right) \\
& +2\left[\mathcal{R}_{a b}^{(10)}+\mathcal{B}_{a, b-2}^{(10)}\right]_{\mathrm{sym}}^{*} \log \left(1+Y_{b, 1}\right)+2 \mathcal{R}_{a 1}^{(10)}{ }_{\text {sym }}^{*} \log \left(1+Y_{1,1}\right)-2 \mathcal{B}_{a 1}^{(10)}{ }_{\text {sy }}^{*} * \log \left(1+\bar{Y}_{2,2}\right)
\end{aligned}
$$

- Same kernels as in periodic case TBA.

$$
\bar{Y}_{a, s}=1 / Y_{a, s}
$$

- Apart from the folding symmetry and the boundary dressing factor σ_{B}, they are similar to the twisted boundary conditions TBA equations, $\begin{aligned} & \text { [Arutyunov, deLeeuw, vanTongeren], } \\ & \text { Ahn, Bajnok, Bombardelli, Nepomech }\end{aligned}$
- Recovering Lüscher: Throwing convolutions with $Y_{a, 0}$

Asymptotic solution to the TBA equations

$$
\begin{gathered}
Y_{1,1}=-\frac{\cos \theta}{\cos \phi}, \quad Y_{1, s}=\frac{\sin [(s+1) \theta] \sin [(s-1) \theta]}{\sin ^{2} \theta} \\
Y_{2,2}=-\frac{\cos \phi}{\cos \theta}, \quad Y_{a, 1}=\frac{\sin ^{2} \phi}{\sin [(a+1) \phi] \sin [(a-1) \phi]} \\
Y_{a, 0}=4 \sigma_{B} \bar{\sigma}_{B}\left(\frac{z^{[-a]}}{z^{[+2]}}\right)^{2 L+2}(\cos \phi-\cos \theta)^{2} \frac{\sin ^{2} a \phi}{\sin ^{2} \phi}
\end{gathered}
$$

The ground state energy is

$$
\mathcal{E}_{0}(L)=-\sum_{a=1}^{\infty} \int_{0}^{\infty} \frac{d \tilde{p}}{2 \pi} \log \left(1+Y_{a, 0}\right)
$$

Since as $\tilde{p} \rightarrow 0$ we have $Y_{a, 0} \sim \frac{G_{2}^{2}}{\tilde{p}^{2}}$,

$$
\mathcal{E}_{0}(L) \sim-\frac{1}{2} \sum_{a=1}^{\infty} G_{a}
$$

Strong coupling check

- Large L at strong coupling

$$
\left.\left(\frac{z^{[-a]}}{z^{[+a]}}\right)^{L+1}\right|_{\tilde{p}=0}=\left.e^{-(L+1) \tilde{E}_{a}}\right|_{\tilde{p}=0} \sim e^{-\frac{a L}{2 g}}
$$

To leading order only $a=1$ contributes

- Evaluating the dressing factors for $\tilde{p} \rightarrow 0$ and $g \rightarrow \infty$

$$
\mathcal{E}_{0}(L) \sim(\cos \phi-\cos \theta) \frac{16 g}{e^{2}} e^{-\frac{L}{2 g}}
$$

which exactly agrees with a classical string theory computation ($E-L$ of a string that stretches from the center to the boundary of $A d S_{5}$ and carries L units of angular momentum in the S^{5}) [Correa, Maldacena, Sever]

Weak coupling check

- For $g \ll 1, e^{-(L+1) \tilde{E}_{a}}$ is small for any L

$$
e^{-(L+1) \tilde{E}_{a}} \sim\left(\frac{4 g^{2}}{a^{2}+\tilde{p}^{2}}\right)^{(L+1)}
$$

- The product of σ_{B} 's becomes (for $g \ll 1$ and $\tilde{p} \rightarrow 0$)

$$
\sigma_{B}(\tilde{p}) \bar{\sigma}_{B}(\tilde{p}) \sim \frac{a^{2}}{\tilde{p}^{2}}
$$

- Collecting all contributions:

$$
\begin{aligned}
\mathcal{E}_{0}(L) & \sim-4 g^{2 L+2} \frac{(\cos \phi-\cos \theta)}{\sin \phi} \sum_{a=1}^{\infty}(-1)^{a} \frac{\sin a \phi}{a^{2 L+1}} \\
& \sim-g^{2 L+2} \frac{(\cos \phi-\cos \theta)}{\sin \phi} \frac{(-1)^{L}(4 \pi)^{2 L+1}}{(2 L+1)!} B_{2 L+1}\left(\frac{\pi-\phi}{2 \pi}\right)+\mathcal{O}\left(g^{4+2 L}\right)
\end{aligned}
$$

B is the Bernoulli polynomial

Weak coupling check

If we take $L \rightarrow 0$ in above ground state energy, we should get the cusp anomalous dimension (at leading weak coupling order)

$$
\mathcal{E}_{0}(0)=\Gamma_{\text {cusp }}=V_{q \bar{q}}=2 g^{2}(\cos \phi-\cos \theta) \frac{\phi}{\sin \phi}+\mathcal{O}\left(g^{4}\right)
$$

In exact agreement with the weak coupling computation for the cusp anomalous dimension [Drukker,Gross,Ooguri 99]

In the small ϕ limit, TBA equations simplify a bit. We solved them iteratively and analytically up to 3-loop order

$$
\Gamma_{\text {cusp }}=V_{q \bar{q}}=-\phi^{2}\left[\frac{\lambda}{16 \pi^{2}}-\frac{\lambda^{2}}{384 \pi^{2}}+\frac{\lambda^{3}}{6144 \pi^{2}}+\mathcal{O}\left(\lambda^{4}\right)\right]
$$

- This is in perfect agreement with the weak coupling expansion of the exact small angles answer computed using localization results [Correa,Henn,Maldacena,Sever]

$$
\begin{aligned}
& \Gamma_{\text {cusp }} \simeq\left(\theta^{2}-\phi^{2}\right) H(\lambda, N) \\
& H(\lambda, N)=\frac{1}{2 \pi^{2}} \lambda \partial_{\lambda} \log \left(\frac{2}{\sqrt{\lambda}} I_{1}(\sqrt{\lambda})\right)=\frac{\sqrt{\lambda}}{4 \pi^{2}} \frac{I_{1}(\sqrt{\lambda})}{I_{1}(\sqrt{\lambda})} \\
&=\frac{\lambda}{16 \pi^{2}}-\frac{\lambda^{2}}{384 \pi^{2}}+\frac{\lambda^{3}}{6144 \pi^{2}}+\mathcal{O}\left(\lambda^{4}\right)
\end{aligned}
$$

The complete $H(\lambda, N)$ has been recently obtained from a simplified TBA [Gromov,Sever]

Conclusions

- We derived a set of TBA equations to compute $\Gamma_{\text {cusp }}(\phi, \theta, \lambda)=V_{q \bar{q}}$ potential exactly in the planar limit
- We checked they give the correct answer for arbitrary cusp angles at leading weak coupling orders
- In the strong coupling limit we checked they give the correct answer for a string with arbitrary cusp angles and large angular momentum L
- We checked they give the correct answer for small cusp angles up to 3-loop order weak coupling (now checked to all-loop [Gromov,Sever])

Interesting limits to consider

- Small angles limit (or $\phi \simeq \theta$): TBA eqs. drastically simplify [Gromov,Sever]
- BES equation for $i \phi=\varphi \rightarrow \infty$
- $q \bar{q}$ potential in flat space for $\phi \rightarrow \pi$
- Ladders limit, when $\theta=i \vartheta$ for $\vartheta \rightarrow \infty$ while keeping $e^{\vartheta} \lambda$ fixed

Also to consider:

- Solve the TBA eqs. numerically for any λ
- can be something similar done in ABJM? Maybe the small cusp angles limit can help to fix the unknown function $h(\lambda)$ in the ABJM dispersion relation

$$
E(p)=\sqrt{1+h(\lambda) \sin ^{2}\left(\frac{p}{2}\right)}
$$

[^0]: [Arutyunov, deLeeuw, vanTongeren]
 [Ahn, Bajnok, Bombardelli, Nepomechie], [deLeeuw, vanTongeren]

