Numerical results for the exact spectrum of planar ABJM theory

based on: F.L-M, arXiv: 1110.5869

Moscow State University \& ITEP, Moscow

Summary

- We numerically solve the Thermodynamic Bethe Ansatz equations for a short operator in planar ABJM theory
- This provides the operator's
exact scaling dimension at intermediate coupling

ABJM duality

Aharon,:Bergman,J.Jferis, Maldaceena 2008
$\mathcal{N}=6$ 3d superconformal
$S U(N) \times S U(N)$ Chern-Simons An AdS4/CFT3 correspondence
Planar limit: $N \rightarrow \infty$
't Hooft coupling λ
operator anomalous dimensions γ_{i}
\Longleftrightarrow
\qquad
superstrings in $A d S^{4} \times C P^{3}$

string tension spectrum of string state energies E_{i}

The problem we study: finding this spectrum

Integrability \Longleftrightarrow hope for exact solution of the problem
Similarities with $\mathrm{N}=4 \mathrm{SYM} / \mathrm{AdS}_{5} \times \mathrm{S}^{5}$

Asymptotic Bethe ansatz (ABA)

Asymptotic spectrum (at $L \rightarrow \infty$) - from ABA equations Gromor, Vieira 2008 based on alternating spin chain
$L \sim$ [\# of elementary fields in the operator]

The operator we study: $\quad \mathcal{O}_{20}=\operatorname{Tr}\left(Y^{[1} Y_{[4}^{\dagger} Y^{2]} Y_{3]}^{\dagger}\right)$ Y^{A}, Y_{A}^{\dagger} are scalar fields; irrep 20 of $S U(4)_{R}$ ABA description:
$\operatorname{su}(2): L=2$, two Bethe roots $u_{4}=u_{\overline{4}}=0$
$\mathrm{sl}(2): L=1$, same Bethe roots

$$
\gamma_{A B A}=\sqrt{1+16 h(\lambda)^{2}}-1
$$

$h(\lambda)$ is an interpolating function of the coupling
$h(\lambda)=\lambda+(-8+2 \zeta(2)) \lambda^{3}+O\left(\lambda^{5}\right)=\sqrt{\frac{\lambda}{2}}+h_{0}+O(1 / \sqrt{\lambda})$

Y-system and TBA

ABA result gets finite-volume wrapping corrections for finite L
Exact spectrum at any volume and coupling - from an infinite set of functional (Y-system/Hirota) or integral (Thermodynamic Bethe Ansatz) equations

$\mathrm{AdS}_{4} \times \mathrm{CP}^{3}$

TBA equations

Same in upper part: $\left\{Y_{a, 1}\right\} \Longleftrightarrow f_{U}$ but need a cutoff on black nodes (keep 6-7 of them).
Also subtract large L solution of Y-system; in the end precision for energy is $\pm 10^{-3}$

Results: the scaling dimension

Conclusions

- First numerical study of TBA for ABJM theory; scaling dimension computed in a region inaccessible by other means
Agreement to 4 loops with perturbation theory at weak coupling
- Singularity approached by $\mathrm{Y}_{1,0}$ - new feature compared to Konishi
- Future directions: increase the coupling using FiNLIE to investigate restoration of $\lambda^{1 / 4}$ scaling; explore other states

