Perturbative S-matrix of Marginally deformed Super Yang-Mills

Minkyoo Kim¹ with Changrim Ahn² · Bum-Hoon Lee¹

¹(CQUeST and Sogang University) · ²(IEU and EWU)

Introduction and Conclusion

We consider the world-sheet scattering of β -deformed SYM at leading orders of perturbation. In the dual string side, we start from single TsT-transformed AdS₅ x S⁵ about natural tori and consider the near BMN limit of the background. We compute tree-level amplitudes from effective quartic potential obtained by light-cone gauge fixing. The results are exactly matched with the exact results. In the gauge theory side, we apply "Coordinate Bethe Ansatz" on three spin state Hamiltonian. Here, the S-matrix and TBCs are not the same but we show that their BAEs are equivalent each other. We conclude that (a) perturbative S-matrix and appropriate TBCs at both sides are consistent with the exact S-matrix with the twisted boundary conditions and (b) in fact, the twisting of boundary conditions seems to be prerequisite essential to see integrability in β-deformed SYM.

TsT-transformation, $AdS_5 \ge S^5$ and TBC

2) Another approach to dual string theory of β -deformed SYM

If we only consider single TsT transformation for any two angles among three angles,

1) Frolov's derivation [Frolov '05]

- Lunin-Maldacena background which is dual to β -deformed SYM can be obtained by world-sheet transformation : T-dual, Shift and T-dual again.

- String dynamics on LM background is equivalent with that on $AdS_5 \propto S^5$ if we compensate appropriate twisted boundary conditions for isometry angles of S^5 .

 $\tilde{\phi}_i(2\pi) - \tilde{\phi}_i(0) = 2\pi(n_i + \epsilon_{ijk}\gamma_j J_k), \ (i, j, k = 1, 2, 3)$

the resulting background is quite simple.

$$ds_{string}^2/R^2 = ds_{AdS_5}^2 + d\rho_1^2 + \rho_1^2 d\hat{\phi}_1^2 + \sum_{i=2}^3 \left(d\rho_i^2 + \hat{G}\rho_i^2 d\hat{\phi}_i^2 \right)$$

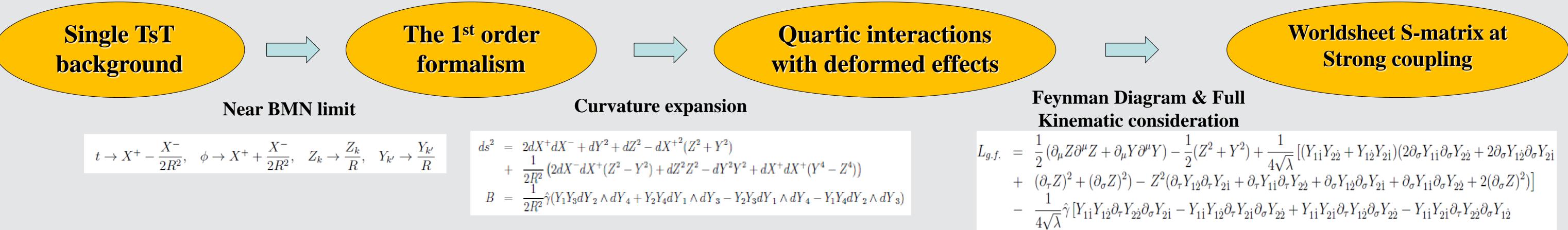
$$B_2 = -\hat{\gamma}R^2\hat{G}\left(\rho_2^2\rho_3^2 d\hat{\phi}_2 \wedge d\hat{\phi}_3\right), \ \hat{G}^{-1} = 1 + \hat{\gamma}^2\rho_2^2\rho_3^2$$

We show that the string dynamics on the above background with little differnet TBC is equivalent with LM strings with PBC and also $AdS_5 \ge S^5$ strings with the Frolov's TBC.

$$\hat{\phi}_1(2\pi) - \hat{\phi}_1(0) = \tilde{\phi}_1(2\pi) - \tilde{\phi}_1(0) = P_{ws} \hat{\phi}_2(2\pi) - \hat{\phi}_2(0) = \tilde{\phi}_2(2\pi) - \tilde{\phi}_2(0) + 2\pi\gamma_1 J_3 = 2\pi(n_2 + \gamma_3 J_1) \hat{\phi}_3(2\pi) - \hat{\phi}_3(0) = \tilde{\phi}_3(2\pi) - \tilde{\phi}_3(0) - 2\pi\gamma_1 J_2 = 2\pi(n_3 - \gamma_2 J_1)$$

Near BMN limit, Gauge fixing and WS Scattering

As in [KMRZ '06], one can compute string WS S-matrix from gauge fixed Lagrangian in near BMN limit. The most efficient way for gauge fixing is the 1st order formalism.



Tree level amplitudes can be easily computed from the above interactions.

$+\dot{Y}_{1\dot{2}}Y_{2\dot{2}}\partial_{\tau}Y_{2\dot{1}}\partial_{\sigma}Y_{1\dot{1}} - Y_{1\dot{2}}Y_{2\dot{2}}\partial_{\tau}Y_{1\dot{1}}\partial_{\sigma}Y_{2\dot{1}} + Y_{2\dot{1}}Y_{2\dot{2}}\partial_{\tau}Y_{1\dot{1}}\partial_{\sigma}Y_{1\dot{2}} - Y_{2\dot{1}}Y_{2\dot{2}}\partial_{\tau}Y_{1\dot{2}}\partial_{\sigma}Y_{1\dot{1}}]$

As the full kinematic constant from relativistic and Jacobian factors is cancelled with the Feynman diagramatic contribution, the full T-matrices are constant shifts of results in

 $AdS_5 \times S^5$. This is exactly matched with the exact results. Also, twisted BCs which is related with our simple TsT background are those of [Ahn '11]. (See the Appendix.)

$$\begin{array}{l} Y^{1i}(\sigma,\tau) &= \int \frac{dp}{2\sqrt{\omega_p}} \begin{bmatrix} a^{1i}(p)e^{-i(\omega\tau-p\sigma)} + \epsilon^{12}\epsilon^{12}a(p)_{22}^{\dagger}e^{i(\omega\tau-p\sigma)} \end{bmatrix}}{Y^{12}(\sigma,\tau)} \\ Y^{12}(\sigma,\tau) &= \int \frac{dp}{2\sqrt{\omega_p}} \begin{bmatrix} a^{1i}(p)e^{-i(\omega\tau-p\sigma)} + \epsilon^{12}\epsilon^{2i}a(p)_{21}^{\dagger}e^{i(\omega\tau-p\sigma)} \end{bmatrix}}{Y_{11}(\sigma,\tau)} \\ Y_{11}(\sigma,\tau) &= \int \frac{dp}{2\sqrt{\omega_p}} \begin{bmatrix} \epsilon_{12}e_{12}a^{22}(p)e^{-i(\omega\tau-p\sigma)} + \epsilon^{12}\epsilon^{2i}a(p)_{21}^{\dagger}e^{i(\omega\tau-p\sigma)} \end{bmatrix}}{Y_{12}(\sigma,\tau)} \\ Y_{12}(\sigma,\tau) &= \int \frac{dp}{2\sqrt{\omega_p}} \begin{bmatrix} \epsilon_{12}e_{21}a^{22}(p)e^{-i(\omega\tau-p\sigma)} + a(p)_{11}^{\dagger}e^{i(\omega\tau-p\sigma)} \end{bmatrix}}{Y_{12}(\sigma,\tau)} \\ Y_{12}(\sigma,\tau) &= \int \frac{dp}{2\sqrt{\omega_p}} \begin{bmatrix} \epsilon_{12}e_{21}a^{21}(p)e^{-i(\omega\tau-p\sigma)} + a(p)_{11}^{\dagger}e^{i(\omega\tau-p\sigma)} \end{bmatrix}}{Y_{12}(\sigma,\tau)} \\ Y_{12}(\sigma,\tau) &= \int \frac{dp}{2\sqrt{\omega_p}} \begin{bmatrix} \epsilon_{12}e_{21}a^{21}(p)e^{-i(\omega\tau-p\sigma)} + a(p)_{11}^{\dagger}e^{i(\omega\tau-p\sigma)} \end{bmatrix}}{Y_{12}(\sigma,\tau)} \\ Y_{12}(\sigma,\tau) &= \int \frac{dp}{2\sqrt{\omega_p}} \begin{bmatrix} \epsilon_{12}e_{21}a^{21}(p)e^{-i(\omega\tau-p\sigma)} + a(p)_{11}^{\dagger}e^{i(\omega\tau-p\sigma)} \end{bmatrix}}{Y_{12}(\sigma,\tau)} \\ Y_{12}(\sigma,\tau) &= \int \frac{dp}{2\sqrt{\omega_p}} \begin{bmatrix} \epsilon_{12}e_{21}a^{21}(p)e^{-i(\omega\tau-p\sigma)} + a(p)_{11}^{\dagger}e^{i(\omega\tau-p\sigma)} \end{bmatrix}}{Y_{12}(\sigma,\tau)} \\ Y_{12}(\sigma,\tau) &= \int \frac{dp}{2\sqrt{\omega_p}} \begin{bmatrix} \epsilon_{12}e_{21}a^{21}(p)e^{-i(\omega\tau-p\sigma)} + a(p)_{11}^{\dagger}e^{i(\omega\tau-p\sigma)} \end{bmatrix}}{Y_{12}(p)} \\ Y_{12}(\sigma,\tau) &= \int \frac{dp}{2\sqrt{\omega_p}} \begin{bmatrix} \epsilon_{12}e_{21}a^{21}(p)e^{-i(\omega\tau-p\sigma)} + a(p)_{11}^{\dagger}e^{i(\omega\tau-p\sigma)} \end{bmatrix}}{Y_{12}(p)} \\ Y_{12}(\sigma,\tau) \\ Y_{12}(\sigma,\tau)$$

Deformed Spin-chains, S-matrix and BAE

Consider the $SU(3)_{\beta}$ chain which is valid at 1-loop order. The Hamiltonian can be obtained by direct computation as in [Berenstein, Cherkis '04] or by using Drinfeld-Reshetikhen twisted R-matrix as in [Beisert, Roiban '05]. When we apply the coordinate BAE to the mixed part of Hamiltonian, the correct Bethe-type Ansatz is not usual but phase shifted one.

To compute S-matrix using these ansatze is straightforward as in usual. Interstingly, these ansatze naturally $\psi_{12}(p_1, p_2) = A_{12}e^{i(p_1 - 2\pi\beta)n_1 + i(p_2 + 2\pi\beta)n_2} + \hat{A}_{12}e^{i(p_1 + 2\pi\beta)n_2 + i(p_2 - 2\pi\beta)n_1}$ $\psi_{21}(p_1, p_2) = \hat{A}_{21}e^{i(p_1 + 2\pi\beta)n_2 + i(p_2 - 2\pi\beta)n_1} + A_{21}e^{i(p_1 - 2\pi\beta)n_1 + i(p_2 + 2\pi\beta)n_2}$ gives twisted boundary conditions for each excitations. Alternatively, we can take simple change of basis as in

[B,C '04]. Then, we can easily obtain the $SU(3)_{\beta}$ S-matrix and in here, the change of basis gives $|\tilde{1}\rangle_{L+1} = e^{-2iL\pi\beta}|\tilde{1}\rangle_1, |\tilde{2}\rangle_{L+1} = e^{2iL\pi\beta}|\tilde{2}\rangle_1$ $S = \begin{pmatrix} s & 0 & 0 & 0 \\ 0 & e^{3i\gamma}t & r & 0 \\ 0 & r & e^{-3i\gamma}t & 0 \\ 0 & 0 & 0 & d \end{pmatrix}$ us twisted boundary conditions. Although this S-matrix and TBC look different with exact results, we can show that their BAEs are equivalent. To derive BAEs, we have to use "nested coordinate Bethe Ansatz" because of non-diagonal S-matrix.

Considered carefully twisted S-matrix and different TBCs, set of BAEs can be derived. Alternatively, we can

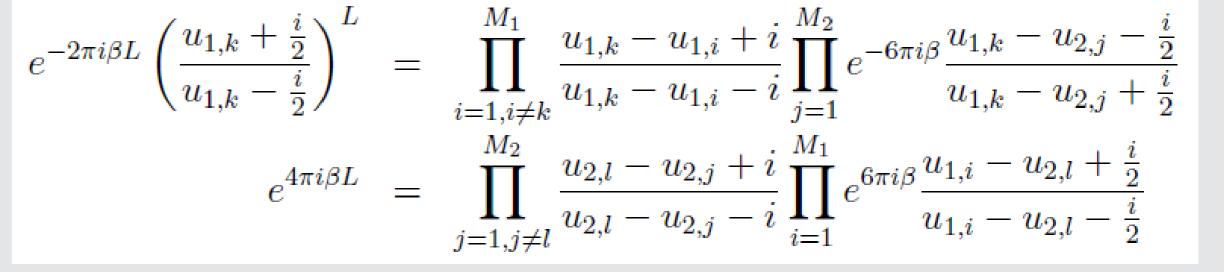
do it by using "Algebraic Bethe Ansatz". For example, one can follow steps in [Kulish, Reshetikhen '83].

Concretely, the deformed effects in eigenvalues come from S-matrix deformation and ratios between TBCs of

fields are appeared in front of each BAEs. Actually, these BAEs are just one loop & SU(3) reduction of

Beisert-Roiban BAE [Frolov, Roiban, Tseytlin '05]. In [ABBN '10], BR BAEs are derived from exact S-matrix with TBCs.

Therefore, we conclude that even though perturbative and exact S-matrix look different, they are spectrally the same each other.



Appendix : the exact S-matrix with TBCs
$$M_{a\dot{a}} = \mathbb{I} \otimes e^{2iJ\beta h}$$
 $\tilde{\mathcal{S}}(p_1, p_2) = F \,\mathcal{S}(p_1, p_2) F$ $F = e^{i\beta(h \otimes \mathbb{I} \otimes \mathbb{I} \otimes h - \mathbb{I} \otimes h \otimes h \otimes \mathbb{I})}$ $h = \text{diag}(\frac{1}{2}, -\frac{1}{2}, 0, 0)$ $\tilde{t}(\lambda) = \text{str}_{a\dot{a}} M_{a\dot{a}} \tilde{S}_{a\dot{a}1\dot{1}}(\lambda, p_1) \dots \tilde{S}_{a\dot{a}N\dot{N}}(\lambda, p_N)$ $F = e^{\frac{2\pi i \gamma_1}{\sqrt{\lambda}}} = (\mathbb{I} + 2\pi i \hat{\gamma}_1 \frac{M}{\sqrt{\lambda}})$ $\tilde{t}(\lambda) = \text{str}_{a\dot{a}} M_{a\dot{a}} \tilde{S}_{a\dot{a}1\dot{1}}(\lambda, p_1) \dots \tilde{S}_{a\dot{a}N\dot{N}}(\lambda, p_N)$ $F = e^{\frac{2\pi i \gamma_1}{\sqrt{\lambda}}} = (\mathbb{I} + 2\pi i \hat{\gamma}_1 \frac{M}{\sqrt{\lambda}})$ $\tilde{t}(\lambda) = \text{str}_{a\dot{a}} M_{a\dot{a}} \tilde{S}_{a\dot{a}1\dot{1}}(\lambda, p_1) \dots \tilde{S}_{a\dot{a}N\dot{N}}(\lambda, p_N)$ $F = e^{2\pi i \gamma_1} = (\mathbb{I} + 2\pi i \hat{\gamma}_1 \frac{M}{\sqrt{\lambda}})$

Core References

[] Frolov, JHEP 0505:069 ('05) [5] Berenstein, Cherkis, Nucl.Phys.B 731:1 ('05) 2] Klose et al., JHEP 0703:094 ('06) [6] Beisert, Roiban, JHEP 0508:039 ('05)

3] Frolov et al, Nucl.Phys.B 731:1 ('05) [7] Ahn et al, JHEP 1102:027 ('11)

[4] Kulish, Reshetikhen, J. Phys. A: Math. Gen. 16 (1983) L591

INTEGRABILITY IN GAUGE AND STRING THEORY 2012 in ETH