Perturbative S-matrix of Marginally deformed Super Yang-Mills

Minkyoo Kim ${ }^{1}$ with Changrim Ahn ${ }^{2} \cdot$ Bum-Hoon Lee ${ }^{1}$
${ }^{1}$ (CQUeST and Sogang University) $\cdot{ }^{2}$ (IEU and EWU)

Introduction and Conclusion

 boundary conditions and (b) in fact, the twisting of boundary conditions seems to be prerequisite essential to see integrability in $\boldsymbol{\beta}$-deformed $S Y M$.

TsT-transformation, $A d S_{5} \times S^{5}$ and TBC

1) Frolov's derivation [Frolov '05]

Lunin-Maldacena background which is dual to β-deformed SYM can be obtained by world-sheet transformation : T-dual, Shift and T-dual again.
String dynamics on LM background is equivalent with that on $\operatorname{AdS}_{5} \times S^{5}$ if we compensate appropriate twisted boundary conditions for isometry angles of S^{5}.
2) Another approach to dual string theory of $\boldsymbol{\beta}$-deformed SYM

If we only consider single TsT transformation for any two angles among three angles, the resulting background is quite simple.

$$
\begin{aligned}
d s_{\text {string }}^{2} / R^{2} & =d s_{A d S_{5}}^{2}+d \rho_{1}^{2}+\rho_{1}^{2} d \hat{\phi}_{1}^{2}+\sum_{i=2}^{3}\left(d \rho_{i}^{2}+\hat{G} \rho_{i}^{2} d \hat{\phi}_{i}^{2}\right) \\
B_{2} & =-\hat{\gamma} R^{2} \hat{G}\left(\rho_{2}^{2} \rho_{3}^{2} d \hat{\phi}_{2} \wedge d \hat{\phi}_{3}\right), \hat{G}^{-1}=1+\hat{\gamma}^{2} \rho_{2}^{2} \rho_{3}^{2}
\end{aligned}
$$

We show that the string dynamics on the above background with little differnet TBC is equivalent with LM strings with PBC and also $\boldsymbol{A d S}_{5} \times S^{5}$ strings with the Frolov's TBC.

```
\mp@subsup{\hat{\phi}}{1}{\prime}(2\pi)-\mp@subsup{\hat{\phi}}{1}{}(0)=\mp@subsup{\tilde{\tilde{\phi}}}{1}{2}(2\pi)-\mp@subsup{\tilde{\phi}}{1}{(}(0)=\mp@subsup{P}{ws}{}
\mp@subsup{\hat{\phi}}{2}{}(2\pi)-\mp@subsup{\hat{\phi}}{2}{\prime}(0)=\mp@subsup{\tilde{\tilde{\phi}}}{2}{2}(2\pi)-\mp@subsup{\tilde{\tilde{\phi}}}{2}{2}(0)+2\pi\mp@subsup{\gamma}{1}{}\mp@subsup{J}{3}{}=2\pi(\mp@subsup{n}{2}{}+\mp@subsup{\gamma}{3}{}\mp@subsup{J}{1}{})
\mp@subsup{\hat{\phi}}{3}{}(2\pi)-\mp@subsup{\hat{\phi}}{3}{}(0)=\mp@subsup{\tilde{\tilde{\phi}}}{3}{}(2\pi)-\mp@subsup{\tilde{\tilde{\phi}}}{3}{}(0)-2\pi\mp@subsup{\gamma}{1}{}\mp@subsup{J}{2}{}=2\pi(\mp@subsup{n}{3}{}-\mp@subsup{\gamma}{2}{}\mp@subsup{J}{1}{})
```

$$
\tilde{\tilde{\phi}}_{i}(2 \pi)-\tilde{\tilde{\phi}}_{i}(0)=2 \pi\left(n_{i}+\epsilon_{i j k} \gamma_{j} J_{k}\right),(i, j, k=1,2,3)
$$

Near BMN limit, Gauge fixing and WS Scattering
As in [KMRZ '06], one can compute string WS S-matrix from gauge fixed Lagrangian in near BMN limit. The most efficient way for gauge fixing is the $1^{\text {st }}$ order formalism.

Single TsT
background

Near BMN limit

As the full kinematic constant from relativistic and Jacobian factors is cancelled with the Feynman diagramatic contribution, the full T-matrices are constant shifts of results in $A d S_{5} \times S^{5}$. This is exactly matched with the exact results. Also, twisted BCs which is related with our simple TsT background are those of [Ahn '11]. (See the Appendix.)

$$
\begin{gathered}
\mathcal{S}=\mathbb{I}+\frac{2 i \pi}{\sqrt{\lambda}} \mathbb{T} \\
\Lambda\left(p, p^{\prime}\right)=\frac{1}{\varepsilon^{\prime} p-\varepsilon p^{\prime}}
\end{gathered}
$$

$$
\mathbb{T}=\left(\varepsilon_{1} p_{2}-\varepsilon_{2} p_{1}\right) a_{1}(p)_{1 i}^{\dagger} a_{2}(p)_{21}^{\dagger} a_{1}(p)_{1 i} a_{2}(p)_{2 \mathrm{i}}-\left(\varepsilon_{1} p_{2}-\varepsilon_{2} p_{1}\right) a_{1}(p)_{1 i}^{\dagger} a_{2}(p)_{12}^{\dagger} a_{1}(p)_{1 i} a_{2}(p)_{1 \dot{2}}
$$

$\mathbb{T}_{\hat{\gamma}}\left|Y_{1 i}(p) Y_{12}\left(p^{\prime}\right)\right\rangle=-\hat{\gamma}\left|Y_{11}(p) Y_{12}\left(p^{\prime}\right)\right\rangle$

$$
+\left(\varepsilon_{1} p_{2}-\varepsilon_{2} p_{1}\right) a_{1}(p)_{22}^{\dagger} a_{2}(p)_{12}^{\dagger} a_{1}(p)_{22} a_{2}(p)_{1 \dot{2}}-\left(\varepsilon_{1} p_{2}-\varepsilon_{2} p_{1}\right) a_{1}(p)_{22}^{\dagger} a_{2}(p)_{21}^{\dagger} a_{1}(p)_{22} a_{2}(p)_{21}
$$

$\mathrm{T}_{\hat{\gamma}}\left|Y_{1 \mathrm{i}}(p) Y_{2 \mathrm{i}}\left(p^{\prime}\right)\right\rangle=+\hat{\gamma}\left|Y_{1 \mathrm{i}}(p) Y_{\mathrm{zi}}\left(p^{\prime}\right)\right\rangle$
$\mathbb{T}_{\hat{\gamma}}\left|Y_{22}(p) Y_{12}\left(p^{\prime}\right)\right\rangle=+\hat{\gamma}\left|Y_{22}(p) Y_{12}\left(p^{\prime}\right)\right\rangle$

Deformed Spin-chains, S-matrix and BAE

Consider the $\boldsymbol{S U}(3)_{\beta}$ chain which is valid at 1-loop order. The Hamiltonian can be obtained by direct computation as in [Berenstein, Cherkis '04] or by using Drinfeld-Reshetikhen twisted R-matrix as in [Beisert, Roiban '05]. When we apply the coordinate BAE to the mixed part of Hamiltonian, the correct Bethe-type Ansatz is not usual but phase shifted one. To compute S-matrix using these ansatze is straightforward as in usual. Interstingly, these ansatze naturally
$\psi_{12}\left(p_{1}, p_{2}\right)=A_{12} e^{i\left(p_{1}-2 \pi \beta\right) n_{1}+i\left(p_{2}+2 \pi \beta\right) n_{2}}+\dot{A}_{12} e^{i\left(p_{1}+2 \pi \beta\right) n_{2}+i\left(p_{2}-2 \pi \beta\right) n_{1}}$ $\psi_{21}\left(p_{1}, p_{2}\right)=A_{21} e^{i\left(p_{1}+2 \pi \beta\right) n_{2}+i\left(p_{2}-2 \pi \beta\right) n_{1}}+A_{21} e^{i\left(p_{1}-2 \pi \beta\right) n_{1}+i\left(p_{2}+2 \pi \beta\right) n_{2}} \quad$ gives twisted boundary conditions for each excitations. Alternatively, we can take simple change of basis as in [\mathbf{B}, \mathbf{C} ‘04]. Then, we can easily obtain the $\boldsymbol{S U}(3)_{\beta} \mathbf{S}$-matrix and in here, the change of basis gives $|\tilde{1}\rangle_{L+1}=e^{-2 i L \pi \beta}|\tilde{1}\rangle_{1}, \quad|\tilde{2}\rangle_{L+1}=e^{2 i L \pi \beta}|\tilde{2}\rangle_{1}$ us twisted boundary conditions. Although this S-matrix and TBC look different with exact results, we can show that their BAEs are equivalent. To derive BAEs, we have to use "nested coordinate Bethe Ansatz" because of non-diagonal S-matrix.
Considered carefully twisted S-matrix and different TBCs, set of BAEs can be derived. Alternatively, we can do it by using "Algebraic Bethe Ansatz". For example, one can follow steps in [Kulish, Reshetikhen '83]. Concretely, the deformed effects in eigenvalues come from S-matrix deformation and ratios between TBCs of fields are appeared in front of each BAEs. Actually, these BAEs are just one loop \& SU(3) reduction of
 Beisert-Roiban BAE [Frolov, Roiban, Tseytlin '05]. In [ABBN '10], BR BAEs are derived from exact S-matrix with TBCs.
Therefore, we conclude that even though perturbative and exact S-matrix look different, they are spectrally the same each other.

Appendix : the exact S-matrix with TBCs		$M_{a \dot{a}}=\mathbb{I} \otimes e^{2 i J \beta h}$
$\tilde{\mathcal{S}}\left(p_{1}, p_{2}\right)=F \mathcal{S}\left(p_{1}, p_{2}\right) F$	$F=e^{i \beta(h \otimes \mathbb{I} \otimes \mathbb{I} \otimes h-\mathbb{I} \otimes h \otimes h \otimes \mathbb{I})}$	$h=\operatorname{diag}\left(\frac{1}{2},-\frac{1}{2}, 0,0\right)$
$\tilde{t}(\lambda)=\operatorname{str}_{a \dot{a}} M_{a \dot{a}} \tilde{S}_{a \dot{a} 1 \mathrm{i}}\left(\lambda, p_{1}\right)$.	$\begin{aligned} F & =e^{\frac{2 \pi \tilde{n}_{1}}{\sqrt{x}}}=(\mathbb{I}+2 \pi \\ \dot{\mathcal{S}}_{\text {strong }} & =F \mathcal{S}_{\text {strong }} F=\mathbb{I} . \end{aligned}$	$\begin{aligned} & \left.\hat{\gamma}_{1} \frac{M}{\sqrt{\lambda}}\right) \\ & -2 \pi i \frac{\left(2 M \gamma_{1}+\mathbb{T}\right)}{\sqrt{\lambda}} \end{aligned}$

Core References

[1] Frolov, JHEP 0505:069 (‘05)
[5] Berenstein, Cherkis, Nucl.Phys.B 731:1 (‘05)
[2] Klose et al. , JHEP 0703:094 (‘06) [6] Beisert, Roiban, JHEP 0508:039 (‘05)
[3] Frolov et al, Nucl.Phys.B 731:1 (‘05) [7] Ahn et al, JHEP 1102:027 (‘11)
[4] Kulish, Reshetikhen, J. Phys. A: Math. Gen. 16 (1983) L591

