Classical integrable structure of Schrodinger sigma model

Dept. of Phys. Kyoto Univ. Io Kawaguchi

1. Introduction and Conclusion

Our aim : Integrable deformations of AdS/CFT

Consider the Schrodinger spacetimes.

- 1-parameter deformation of AdS spaces
- gravity duals for non-relativistic CFTs

Consider the 3D Schrodinger spacetime:

$$ds^{2} = L^{2} \left[d\rho^{2} - 2e^{-2\rho} dudv - \underline{C}e^{-4\rho} dv^{2} \right]$$
Isometry : SL(2,R)_L × U(1)_R
With $g = e^{2vT^{+}}e^{2\rhoT^{2}}e^{2uT^{-}} \in SL(2,\mathbb{R})$
 $ds^{2} = \frac{L^{2}}{2} \left[\operatorname{tr} (J^{2}) - 2C \left(\operatorname{tr} [T^{-}J] \right)^{2} \right]$
 $J = g^{-1}dg$
SL(2,R), × U(1)_R symmetry : $q' = q_{\mathrm{L}} \cdot q \cdot e^{-T^{-}\delta u}$

Non-linear sigma model defined on 3D Schrodinger spacetime (Schrodinger sigma model)

Action

$$S = \int_{-\infty}^{\infty} dt \int_{-\infty}^{\infty} dx \ \eta^{\mu\nu} \left[\operatorname{tr} \left(J_{\mu} J_{\nu} \right) - 2C \operatorname{tr} \left(T^{-} J_{\mu} \right) \operatorname{tr} \left(T^{-} J_{\nu} \right) \right]$$
Boundary conditions : $g(t, x) \to g_{\infty} \ (= \operatorname{const.}), \quad \text{for } x \to \pm \infty$

Hybrid integrable structure of Schrodinger sigma model

Global symm.	SL(2,R) _L	U(1) _R
Hidden symm.	Yangian	????
<i>r</i> -matrix	rational	deformed rational

2. Left description [I.K., K.Yoshida, 1109.0872]

SL(2,R)_L current :

 j_{μ}^{L}

$$=gJ_{\mu}g^{-1}-2C\operatorname{tr}(T^{-}J_{\mu})gT^{-}g^{-1}-\sqrt{C}\epsilon_{\mu\nu}\partial^{\nu}\left(gT^{-}g^{-1}\right)$$

topological term

The SL(2,R)_L current satisfies the flatness condition: $\left[\partial_t - j_t^L, \partial_x - j_x^L\right] = 0$

FACT
flat and conserved current
infinite number of conserved charges

$$Q_{(0)}^{L} = \int_{-\infty}^{\infty} dx \ j_{t}^{L}(x)$$
 cf. BIZZ construction
 $Q_{(1)}^{L} = \frac{1}{4} \int_{-\infty}^{\infty} dx \ \int_{-\infty}^{\infty} dy \ \epsilon(x-y) \left[j_{t}^{L}(x), j_{t}^{L}(y) \right] - \int_{-\infty}^{\infty} dx \ j_{x}^{L}(x)$
 $Q_{(2)}^{L}, \ Q_{(3)}^{L}, \cdots$

They satisfy the defining relations of Yangian.

 $\begin{array}{c} \text{Left Lax pair, classical } r\text{-matrix} \\ L_t^L(\lambda_L) = \frac{1}{1-\lambda_L^2} \left[j_t^L - \lambda_L j_x^L \right], \quad L_x^L(\lambda_L) = \frac{1}{1-\lambda_L^2} \left[j_x^L - \lambda_L j_t^L \right] \\ \lambda_L : \text{spectral parameter} \\ \longrightarrow \quad \left[\partial_t - L_t^L(\lambda_L), \partial_x - L_x^L(\lambda_L) \right] = 0 \\ \text{Poisson brackets of } L_x^L(\lambda_L) \quad \longrightarrow \quad \text{rational } r\text{-matrix} \\ \end{array}$

Monodromy matrix

$$U^{L}(\lambda_{L}) = P \exp \left[\int_{-\infty}^{\infty} dx \ L_{x}^{L}(x;\lambda_{L}) \right] \longrightarrow \frac{d}{dt} U^{L}(\lambda_{L}) = 0$$
Infinite dim. symm. can be obtained
by expanding the monodromy matrix.
EX. Yangian algebra is obtained from U^L(\lambda_{L}).

Based on the collaborations with Takuya Matsumoto and Kentaroh Yoshida

3. Right description [I.K., K.Yoshida, 1109.0872; I.K., T.Matsumoto, K.Yoshida, in progress]

 $U(1)_R$ symm. Is enhanced with non-local currents:

$$\{Q^{R,-}, Q^{R,2}\}_{\rm P} = \frac{2}{\sqrt{C}} \sinh\left(\frac{\sqrt{C}}{2}Q^{R,-}\right)$$

$$\{Q^{R,-}, Q^{R,+}\}_{\rm P} = Q^{R,2}, \quad \{Q^{R,2}, Q^{R,+}\}_{\rm P} = Q^{R,+} \cosh\left(\frac{\sqrt{C}}{2}Q^{R,-}\right)$$

$$\begin{split} L_t^R(\lambda_R) &= \frac{1}{1 - \lambda_R^2} \left[-T^+ \left(-J_t^- + \lambda_R J_x^- \right) + T^2 \left(-J_t^2 + \lambda_R J_x^2 + \sqrt{C} \lambda_R J_t^- - \sqrt{C} \lambda_R^2 J_x^2 \right) \right. \\ & -T^- \left(-J_t^+ + \lambda_R J_x^+ + \sqrt{C} \lambda_R J_t^2 - \sqrt{C} \lambda_R^2 J_x^2 + C \lambda_R J_x^- - C \lambda_R^2 J_t^- \right) \right] \\ L_x^R(\lambda_R) &= \frac{1}{1 - \lambda_R^2} \left[-T^+ \left(-J_x^- + \lambda_R J_t^- \right) + T^2 \left(-J_x^2 + \lambda_R J_t^2 + \sqrt{C} \lambda_R J_x^- - \sqrt{C} \lambda_R^2 J_t^- \right) \right] \\ & -T^- \left(-J_x^+ + \lambda_R J_t^+ + \sqrt{C} \lambda_R J_x^2 - \sqrt{C} \lambda_R^2 J_t^2 + C \lambda_R J_t^- - C \lambda_R^2 J_x^- \right) \right] \\ \lambda_R : \text{spectral parameter} \end{split}$$

null deformed rational *r*-matrix (*z*trigonometric)

Note With a certain gauge-transformation,
$$L^{R}_{\mu}(\lambda_{R})$$
 car be written with a flat and conserved current i..:

$$L_t^R(\lambda_R) = G^{-1} \left(\frac{1}{1 - \lambda_R^2} [j_t - \lambda_R j_x] \right) G - G^{-1} \partial_t G$$
$$L_x^R(\lambda_R) = G^{-1} \left(\frac{1}{1 - \lambda_R^2} [j_x - \lambda_R j_t] \right) G - G^{-1} \partial_x G$$
$$G = e^{-\sqrt{C}T^2 \chi} e^{-\sqrt{C}T^- \xi} \qquad \xi(x) = \frac{1}{2} \int_{-\infty}^{\infty} dy \ \epsilon(x - y) j_t^{R,2}(y) dy$$

A (non-local) flat and conserved current in right description:

$$j_{\mu} = -T^{+} \epsilon_{\mu\nu} \partial^{\nu} \left(\frac{1}{\sqrt{C}} e^{-\sqrt{C}\chi} \right) + T^{2} \epsilon_{\mu\nu} \partial^{\nu} \left(\xi e^{-\sqrt{C}\chi} \right)$$
$$-T^{-} \left[j_{\mu}^{R,+} + \frac{\sqrt{C}}{2} \epsilon_{\mu\nu} \partial^{\nu} \left(\xi^{2} e^{-\sqrt{C}\chi} \right) \right]$$

Enhancement of q-deformed Poincare symmetry

BIZZ construction

Infinite number of conserved charges
$$Q_{(0)}, Q_{(1)}, \cdots$$

Note An expansion of $U^{R}(\lambda_{R})$ also gives $Q_{(n)}$.

Note $Q_{(0)}$ contains the generators of *q*-deformed Poincare symm.

$$\begin{split} Q^{-}_{(0)} &= \frac{2}{\sqrt{C}} \sinh\left(\frac{\sqrt{C}}{2}Q^{R,-}\right), \quad Q^{2}_{(0)} &= \cosh\left(\frac{\sqrt{C}}{2}Q^{R,-}\right)Q^{R,2}\\ Q^{+}_{(0)} &= Q^{R,+} + \frac{\sqrt{C}}{4} \sinh\left(\frac{\sqrt{C}}{2}Q^{R,-}\right) \left(Q^{R,2}\right)^2 \end{split}$$

The algebra of $Q_{(n)}$ should be a 1-para. deformation of SL(2,R) Yangian.

C→0 limit ← Yangian limit

Future works

- Algebra of enhanced q-deformed Poincare symmetry
- Left-Right duality [I.K., T.Matsumoto, K.Yoshida, 1203.3400]