




























The following bibliography comments have been appended to the original scanned
document on 06 July 2009.

1. Z-invariance

(a) the primary reference is Baxter [1].

(b) for applications to link invariants see Jones [2].

(c) for applications to one-point functions in the chiral Potts model see Baxter [3]

(d) for connections with rhombic tilings and circle patterns see [4]

2. Universal R-matrix

(a) the primary reference is Drinfeld [5]

(b) for an expression in terms of infinite products see Khoroshkin and Tolstoy [6]

(c) for an example of evaluation for Uq(ŝl2) see [7]

3. String hypotheses in TBA

(a) examples of cut-offs to the number of string types in the context of the RSOS

model for Uq(ŝl2) [8] and Uq(ŝln) [9]

(b) a really wild string hypothesis connecting Uq(A
(2)
2 ) with Uq(Ê8), [10].

4. Functional relations

(a) Q-operator, see Appendix C of [11], which (along with other four appendices
and, of course, the main text of the paper) contains a wealth of information
on the subject. Highly recommended.

(b) details of the derivation of the functional relations using Q-operators and their
connection to the q-oscillators are given in [12]. For some other algebras see
[13] and [14] and references therein. Alternative algebraic construction for
Q-operators in the context of cyclic representations is given in [15]

(c) integral equations for excited states [16]

(d) connection of functional relations to the TBA is discussed in [17] and [18]

5. The (absence of) difference property

(a) the primary example of a model without the difference property is the chiral
Potts model, see [19].

(b) for a connection of the chiral Potts model to quantum groups and cyclic rep-
resentations see [15]

(c) integrable quantum spin systems on an (integrable) classical background [20,
21].

(d) Hidden 3D structure

i. primary references for the tetrahedron equation are [22, 23].

ii. hidden 3D structure of 2D models — see [24] and [25].

iii. chiral Potts model as a two-layer 3D model [24].

iv. meaning of the tetrahedron equation in discrete differential geometry [26]
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