Fundamental mathematical structures in statistical and quantum systems.
V.V. Bazhanov (ANV).

1. Introduction to the $\operatorname{Tanj}_{\mathrm{J}}$-Baxter equation
2. Algebraic structures, functional equations and their connections to TBA.
3. Difference property
4. Hidden 3D structures in 2D models.
5. Conclusion.
6. Introdiction to the Yang-Baxter Equs. (1)
(2D lattice models of stat mech.)

(3)
(4)

* Oriented 4-valent graph
* Edges carry "spiu" variables $a, b, c \ldots \in\{1, \ldots, N\}$

Geometric uultiplication (diagram vules)

(1)
 $=R_{12} *$ expernal spius are fixed

* $R_{a b}^{c d}$ are different for difterent vertices.

Yang-Barter Equ.

(3)

$$
\begin{aligned}
& \sum_{a_{1}^{\prime} a_{2}^{\prime} a_{3}^{\prime}}\left(R_{12}\right)_{a_{1} a_{2}}^{a_{1}^{\prime} a_{2}^{\prime}}\left(R_{13}\right)_{a_{1}^{\prime} a_{3}}^{a_{1}^{\prime \prime} a_{3}^{\prime}}\left(R_{23}\right)_{a_{2}^{\prime} a_{3}^{\prime}}^{a_{2}^{\prime \prime} a_{3}^{\prime \prime}}= \\
& =\sum_{1}^{\prime} \ldots \ldots .
\end{aligned}
$$

$$
\begin{gathered}
R: V \otimes X \rightarrow V \otimes V, \quad V=\mathbb{C}^{N} \\
R_{12} R_{13} R_{23}=R_{23} R_{13} R_{12} \| P(x \otimes y)=(y \otimes x) . \\
R_{12}=R\left(u_{1}-u_{2}\right) \quad u_{1} \rightarrow \\
\text { 'difference property' }_{\prime \prime}
\end{gathered}
$$

$$
R(u)=(C \otimes 1)(P R(-y-u) P)^{t_{1}}(C \otimes 1)^{-1}
$$

"crossing symmetory".

$$
R(u) P R(-u) P=1 \quad \text { "unitavity". }
$$

Z-invariance (Baxter 1979).
Partition function depends only on boundary data, bat not on details of the lattice inside (i.e. on a permutation X rapidities)

$z=Z\left(u_{1}, u_{2}, \ldots(\right.$ perm $)$.

$$
=T(u)
$$

"transfer matrix"
$\neq u, v$
"integrability".
(4) 2. Solutions of the Yang-Baxter Eq. (YBE)

YBE is an overdetermined system of algebraic eqns. (N^{6} equs. for $3 N^{4}$ unknowns, We do not know a general solution even for $N=2$!
But there are recipes, e.g., Quantum Groups
Consider quartum $\mathrm{Kac}-$ Moody algebra $t=U_{\&}\left(\widehat{S l_{2}}\right)$

$$
\begin{aligned}
& x_{0}, x_{1}, y_{0}, y_{1}, h_{0}, h_{1} \quad \text { (Cartan-Wegl generators) } \\
& {\left[h_{i}, h_{j}\right]=0, \quad\left[h_{i}, x_{j}\right]=-a_{i j} x_{j},\left[h_{i} y_{j}\right]=a_{i j} y_{j}} \\
& {\left[x_{i}, y_{j}\right]=\delta_{i j} \frac{q^{h_{i}-}-q^{-h_{i}}}{q-q^{-1}}, \quad \forall a_{i j} \|=\left(\begin{array}{cc}
2 & -2 \\
-2 & 2
\end{array}\right)} \\
& \text { + 4-th order Sure relations } \\
& k=h_{0}+h_{1}=0 \quad \text { (central clement) } \\
& \Delta: \quad A \rightarrow A \in A \quad \text { (co-multiplication) } \\
& \Delta\left(x_{i}\right)=x_{i} \otimes 1+q^{-k_{i}} \otimes x_{i} \\
& \Delta\left(y_{i}\right)=y_{i} \otimes q^{k_{i}}+1 \otimes y_{i} \\
& \Delta\left(h_{i}\right)=h_{i} \otimes 1+h_{i} \otimes 1
\end{aligned}
$$

(5) There exist a "universal R-matrix" (Drinfeld).

$$
\begin{gathered}
R \subset B_{+} \otimes B_{-} ; \quad \begin{array}{l}
B_{B}:\left\{h_{0,1}, x_{0}, x_{1}\right\} \\
B_{+}:\left\{\alpha_{0,1}, y_{0}, y_{1}\right\}
\end{array} \\
\Delta^{\prime} R=R \Delta ; \quad \Delta^{\prime}=P_{0} \Delta \\
R^{12} R^{13} R^{23}=R^{23} R^{13} R^{12} \text { (YBE) } \\
R^{12}=R \otimes 1, \text { etc. }
\end{gathered}
$$

"Explicit expression for R "

$$
R=9^{-\frac{h_{0} \otimes h_{0}}{2}}\left(1+\left(q-q^{-1}\right)\left(y_{0} \otimes x_{0}+y_{1} \otimes x_{1}\right)+\right.
$$

+ infinite series in $\left.y_{i} \otimes 1,1 \otimes x_{i} \geqslant\right)$
can be evaluated for particular rept. of $U_{q}\left(\hat{s}_{2}\right)$.

Representations of $\left.U_{9}, \widehat{\mathrm{SC}_{2}}\right)$

* YBE is written in $B_{+} \otimes A \otimes B_{-}$

$$
\text { * } U_{q}\left(\hat{s I}_{2}\right) \underset{\text { "evaluation" }}{ } U_{q}\left(s I_{2}\right)
$$

$* B_{ \pm}\left(U_{q}\left(s l_{2}\right)\right) \longrightarrow H_{q} \begin{gathered}\text { deformed Hëscal } \\ \text { q-oscillators. }\end{gathered}$
(i) Evaluation representations $U_{9}\left(\hat{s}_{2}\right) \rightarrow U_{9}\left(s l_{2}\right)$

$$
\begin{aligned}
& U_{q}\left(\mathrm{SI}_{2}\right): \quad[H, E]=2 E,[H, F]=-2 F, \\
& {[E, F]=\frac{q^{H}-q^{-H}}{q-q^{-1}}} \\
& x_{0} \rightarrow \lambda^{-1} F q^{-H / 2}, \quad y_{0} \rightarrow \lambda q^{H / 2} E, \quad h_{0} \rightarrow H \\
& x_{1} \rightarrow \lambda^{-1} E q^{H / 2}, \quad y_{1} \rightarrow \lambda q^{-H / 2} F, \quad h_{1} \rightarrow-H
\end{aligned}
$$

$\lambda=e^{i n}$ - multiplicative spectral parameter.
Representations of $\mathrm{V}_{q}\left(\mathrm{~S}_{2}\right)$
(1) $\pi_{j}, j=0,1 / 2,1, \ldots$,
$(2 j+1)$ dimensional reps.
(2) $\pi_{j}^{+}, \quad j \in \mathbb{C}$, infinite dimensinal highest weight $\begin{array}{r}\text { reps. }\end{array}$
(3) $\pi_{\text {cyclic, }} q^{n}=1$, n-dimensional reps
wéthont highest weight.
(b) q-oscillator reps. $B_{+}\left(u_{q}\left(\hat{x}_{2}\right)\right) \rightarrow H_{q}$

$$
\begin{aligned}
& \rho_{ \pm}: h_{0}=-h_{1} \rightarrow \pm \text { ft, } y_{0} \rightarrow \lambda \varepsilon_{ \pm}, g_{1} \rightarrow \lambda \varepsilon_{\mp} \\
& H_{q}: q \varepsilon_{+} \varepsilon_{-}-q^{-1} \varepsilon_{-} \varepsilon_{+}=\frac{1}{q-q^{-1}}, \quad\left[\mu, \varepsilon_{ \pm}\right]= \pm 2 \varepsilon_{ \pm}
\end{aligned}
$$

Functional relations for T-aerators.

$$
\begin{equation*}
R_{j j^{\prime}}(\lambda / \mu)=\left(\pi_{j}(\lambda) \otimes \pi_{j^{\prime}}(\mu)\right) \text { Q } \tag{7}
\end{equation*}
$$

$R_{1 / 2} 1 / 2(\lambda)$ - R-matrix of the 6-vertex model.

"Universal" T-operators, are elements of

$$
\begin{aligned}
& \left(B_{-} B_{-} B_{-} . . B_{-}\right) ; B_{-}=B_{-}\left(v_{q}\left(\hat{s}_{2}\right)\right. \\
& T_{j}(u) \text { - when } \pi=\pi_{j},(2 j+1)-\operatorname{dim} \\
& j=0,1 / 2,1, \ldots \\
& T_{j}^{+}(u) \quad \text { when } \pi=\pi_{j}^{+} \text {, infinite-dim } \\
& \text { haw. reps. } \\
& Q_{ \pm} \text {(u) when } \pi=\rho \pm, \quad q \text {-oscillators. }
\end{aligned}
$$

Algebra of T-operators.

for special shifts. of the spectral parameters. $\operatorname{dim} \pi_{1} \cdot \operatorname{dim} \pi_{2}$

$$
\begin{gathered}
T_{j}^{+}(u)=Q_{+}(u+(2 j+1) \eta) Q_{-}(u-(2 j+1) \eta) \\
q=e^{2 i \eta} \\
T_{j}(u)=T_{j}^{+}(u)-T_{-j-1}^{+}(u), \text { when } \\
\quad(2 j+1) \in \mathbb{Z}_{+} \\
T_{i} \\
T_{j}(u)=Q_{+}(u+(2 j+1) y) Q_{-}(u-(2 j+1) \eta)-Q_{+}(u-(2 j+1) \eta) Q_{-}(u+(2 j+1) y) \\
T_{0}(u)=1, \\
T_{1 / 2}(u) Q_{ \pm}(u)=Q_{ \pm}(u+y)+Q_{ \pm}(u-\eta) \quad T Q-Q q u .
\end{gathered}
$$

$$
\begin{align*}
& T_{j}(u+y) T_{j}(u-y)=1+T_{j-1 / 2}(u) T_{j+1 / 2} \text { (u) } \tag{9}\\
& Y_{j}(u+y) Y_{j}(u-y)=\left(1+Y_{j-\frac{1}{2}}(u)\right)\left(1+Y_{j+1 / 2}(u)\right) \\
& Y_{j}(u)=T_{j-1 / 2}(u) T_{j+1 / 2}(u), j=1 / 2,1, \ldots
\end{align*}
$$

* Equations are exact for finite 1 * universal for lattice/field th.

$$
\begin{aligned}
& \left.\operatorname{Tr}\left(T_{L}\right)^{M}=\operatorname{Tr} T_{M}\right)^{L} \\
& \text { finite volume } \\
& \text { Side } \\
& \text { side }
\end{aligned}
$$

*TBA strings correspond to reps. of genentum group. For $L \rightarrow \infty \quad Y_{j}(u) \simeq\left(f_{j}(u)\right)^{L}$ group.
$\log Y_{j}(u)=L \log f_{j}(u)+$ integral term that vanish when $L \rightarrow \infty$. Note $\tilde{T}_{M}^{L} \neq e^{-L \tilde{H}}$
For TBA with $\operatorname{Tr}\left(e^{-L \tilde{H}}\right)$ the analytic properties could te extremely complicated.

About the difference property (and its absence).

1. Cyclic representation at roots of unity, $q^{n}=1$
2. Quantum systems on a classical background.
3. Hidden Sd structure
4. Cyclic reps. of $U_{9}\left(s I_{2}\right)$.
for $q^{n}=1$ the n-th powers E^{n}, F^{n} are central elements.
$\pi_{\text {cyclic contains two spectral parameters }}$ which lie onequrve of the genus $(n-1)^{2}$

$\pi_{c y c l i c}(\alpha, \beta)$
No difference property.

Quantum systems on a classical
Background.

* fluctuations around classical solutions.
* parameters of the quantum model depend on the classical solution of the equations of motion.

(Hirota equs).

$$
R_{a b}^{c d}\left(w_{u} / w_{d}\right)
$$

$$
\frac{w_{u}}{w_{d}}=\frac{x w_{L}+w_{R}}{w_{L}+x w_{R}}
$$

Faddeev x Volta Bobenko X Pinked VB, Bobenke X Reshetikhin

* Solve classical eq of notion
* Calculate Boltzmann weights
* For a trivial constant classical solution one obtains the chiral Potts model. again (V B2008).
* the same Hirota equ. for central charges arise for $\operatorname{SU}(2 / 2) R$-matrix (in Beisert, Arutyunov XFrolov)

3D structure

1. Zamolodchikov tetrahedron equation (3D analog of the Yang-Boxter eqn).

$$
R_{345} R_{125} R_{136} R_{246}=R_{246} R_{136} R_{125} R_{345}
$$

* VBX Baxter (1993) (cirmal Pots)
* $V B \times$ Sergeev $(2006) U_{9}\left(\widehat{g i n}_{n}\right)$

Spectra! parancters $\$$ moduli ape wixed under 3D rotation.

* Shastry R-matr. Wadat:

Conclusion

* what is a meaning of z-invariance for the action functional?
* Junctional equations lead to the TBA, strings corresponds to reps of quantulu group. (No string conjectures required).
* For $q^{n}=1$ there is only a finite member of string types.
* How to include $S V(2 / 2) R$ matrix into the general quantum group scheme? Are there missing spectral parameters?
* Are there new solutions of the tetrahedron equation behind the AdS/CFT?

The following bibliography comments have been appended to the original scanned document on 06 July 2009.

1. Z-invariance
(a) the primary reference is Baxter [1].
(b) for applications to link invariants see Jones [2].
(c) for applications to one-point functions in the chiral Potts model see Baxter [3]
(d) for connections with rhombic tilings and circle patterns see [4]
2. Universal R-matrix
(a) the primary reference is Drinfeld [5]
(b) for an expression in terms of infinite products see Khoroshkin and Tolstoy [6]
(c) for an example of evaluation for $U_{q}\left(\widehat{s l_{2}}\right)$ see [7]
3. String hypotheses in TBA
(a) examples of cut-offs to the number of string types in the context of the RSOS model for $U_{q}\left(\widehat{s l_{2}}\right)[8]$ and $U_{q}\left(\widehat{s l_{n}}\right)[9]$
(b) a really wild string hypothesis connecting $U_{q}\left(A_{2}^{(2)}\right)$ with $U_{q}\left(\widehat{E_{8}}\right)$, [10].
4. Functional relations
(a) Q-operator, see Appendix C of [11], which (along with other four appendices and, of course, the main text of the paper) contains a wealth of information on the subject. Highly recommended.
(b) details of the derivation of the functional relations using Q-operators and their connection to the q-oscillators are given in [12]. For some other algebras see [13] and [14] and references therein. Alternative algebraic construction for Q-operators in the context of cyclic representations is given in [15]
(c) integral equations for excited states [16]
(d) connection of functional relations to the TBA is discussed in [17] and [18]
5. The (absence of) difference property
(a) the primary example of a model without the difference property is the chiral Potts model, see [19].
(b) for a connection of the chiral Potts model to quantum groups and cyclic representations see [15]
(c) integrable quantum spin systems on an (integrable) classical background [20, 21].
(d) Hidden 3D structure
i. primary references for the tetrahedron equation are [22, 23].
ii. hidden 3D structure of 2D models - see [24] and [25].
iii. chiral Potts model as a two-layer 3D model [24].
iv. meaning of the tetrahedron equation in discrete differential geometry [26]

References

[1] Baxter, R. J. Solvable eight-vertex model on an arbitrary planar lattice. Philos. Trans. Roy. Soc. London Ser. A 289 (1978) 315-346.
[2] Jones, V. On knot invariants related to some statistical mechanical models. Pacific Journal of Mathematics 137 (1989) 311388.
[3] Baxter, R. J. Functional relations for the order parameters of the chiral Potts model. J. Statist. Phys. 91 (1998) 499-524.
[4] Bazhanov, V. V., Mangazeev, V. V., and Sergeev, S. M. Faddeev-Volkov solution of the Yang-Baxter Equation and Discrete Conformal Symmetry. Nucl. Phys. B784 (2007) 234-258.
[5] Drinfel'd, V. G. Quantum groups. In Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), pages 798-820, Providence, RI, 1987. Amer. Math. Soc.
[6] Khoroshkin, S. M. and Tolstoy, V. N. Universal R-matrix for quantized (super)algebras. Comm. Math. Phys. 141 (1991) 599-617.
[7] Khoroshkin, S. M., Stolin, A. A., and Tolstoy, V. N. Generalized Gauss decomposition of Trigonometric R-matrices. Modern Phys. Lett. A 10 (1995) 1375-1392.
[8] Bazhanov, V. V. and Reshetikhin, N. Y. Critical RSOS models and conformal field theory. Internat. J. Modern Phys. A 4 (1989) 115-142.
[9] Bazhanov, V. V. and Reshetikhin, N. Restricted solid-on-solid models connected with simply laced algebras and conformal field theory. J. Phys. A 23 (1990) 1477-1492.
[10] Bazhanov, V. V., Nienhuis, B., and Warnaar, S. O. Lattice Ising model in a field: E_{8} scattering theory. Phys. Lett. B 322 (1994) 198-206.
[11] Baxter, R. J. Partition function of the eight-vertex lattice model. Ann. Physics 70 (1972) 193-228.
[12] Bazhanov, V. V., Lukyanov, S. L., and Zamolodchikov, A. B. Integrable structure of conformal field theory. III. The Yang-Baxter Relation. Comm. Math. Phys. 200 (1999) 297-324. arXiv:hep-th/9805008.
[13] Bazhanov, V. V., Hibberd, A. N., and Khoroshkin, S. M. Integrable structure of W_{3} Conformal Field Theory, Quantum Boussinesq Theory and Boundary Affine Toda Theory. Nucl. Phys. B 622 (2002) 475-547.
[14] Bazhanov, V. V. and Tsuboi, Z. Baxter's Q-operators for supersymmetric spin chains. Nucl. Phys. B805 (2008) 451-516.
[15] Bazhanov, V. V. and Stroganov, Y. G. Chiral Potts model as a descendant of the six-vertex model. J. Statist. Phys. 59 (1990) 799-817.
[16] Klümper, A. and Pearce, P. A. Conformal Weights of RSOS Lattice Models and their Fusion Hierarchies. Phys. A 183 (1992) 304-350.
[17] Bazhanov, V. V., Lukyanov, S. L., and Zamolodchikov, A. B. Integrable structure of conformal field theory, quantum KdV theory and thermodynamic Bethe Ansatz. Comm. Math. Phys. 177 (1996) 381-398. [hep-th/9412229].
[18] Bazhanov, V. V., Lukyanov, S. L., and Zamolodchikov, A. B. Quantum field theories in finite volume: excited state energies. Nucl. Phys. B 489 (1997) 487-531. [hep-th/9607099].
[19] Baxter, R. J., Perk, J. H. H., and Au-Yang, H. New solutions of the star triangle relations for the chiral Potts model. Phys. Lett. A128 (1988) 138-142.
[20] Bazhanov, V. V., Bobenko, A. I., and Reshetikhin, N. Y. Quantum discrete SineGordon model at roots of 1: Integrable quantum system on the integrable classical background. Commun. Math. Phys. 175 (1994) 377-400.
[21] Bazhanov, V. V. Chiral Potts model and discrete quantum sine-Gordon model at roots of unity. arXiv:0809.2351, 2008.
[22] Zamolodchikov, A. B. Tetrahedra equations and integrable systems in threedimensional space. Soviet Phys. JETP 52 (1980) 325-336.
[23] Zamolodchikov, A. B. Tetrahedron equations and the relativistic S matrix of straight strings in (2+1)-dimensions. Commun. Math. Phys. 79 (1981) 489-505.
[24] Bazhanov, V. V. and Baxter, R. J. New solvable lattice models in three dimensions. J. Statist. Phys. 69 (1992) 453-485.
[25] Bazhanov, V. V. and Sergeev, S. M. Zamolodchikov's tetrahedron equation and hidden structure of quantum groups. J. Phys. A 39 (2006) 3295-3310.
[26] Bazhanov, V. V., Mangazeev, V. V., and Sergeev, S. M. Quantum geometry of 3-dimensional lattices. J. Stat. Mech. 0807 (2008) P07004.

