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Motivation and goal

Supergravity is the (ultra-)low energy effective action of
string or M-theory. Certainly not the full story since theory
contains many more states: Winding, wrapping, . . .

Aim: Study M-theory effective action beyond supergravity, in
particular higher derivative corrections in D = 11− d

dimensions with T d

Tools

Hidden symmetries Ed(R) and U-duality Ed(Z)

Exceptional field theory structures

Relation between field theory loops
and BPS-protected string corrections

Automorphic forms
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String theory scattering amplitudes

Low-energy limit of perturbative amplitudes

E.g. four gravitons (in D = 10 type II) at tree level

A(s, t, u) = g−2
s

4

stu

Γ(1− α′s)Γ(1− α′t)Γ(1− α′u)

Γ(1 + α′s)Γ(1 + α′t)Γ(1 + α′u)
R4

α′ = ℓ2s

string scale

= 4g−2
s R4

[
1

stu
+ (α′)3·2ζ(3)+(α′)5(s2 + t2 + u2)·ζ(5)+ . . .

]

❏❏❪
dimensionful → massive string states
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Low energy effective action

Higher order α′

contributions to A
⇐⇒ higher derivative terms in

low energy effective action

e−1L = ℓ2−D

[

R−
1

2
GIJ(Φ)∂Φ

I∂ΦJ + . . .

]

+ ℓ8−D
[

ED
(0,0)(Φ)R

4 + . . .
]

+ ℓ12−D
[

ED
(1,0)(Φ)∇

4R4 + . . .
]

+ ℓ14−D
[

ED
(0,1)(Φ)∇

6R4 + . . .
]

+ . . .

Type IIB

E10B
(0,0)(Φ) = 2ζ(3)e−3φ/2 + . . .

Φ = χ+ ie−φ, eφ = gs

Scalar moduli fields Φ belong to quantum moduli space

Ed(Z)\Ed(R)/K(Ed) (d = 11−D)

K(Ed): max. compact subgroup of CJ symmetry Ed(R)
[Cremmer, Julia]

Ed(Z): Discrete U-duality [Hull, Townsend]
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Higher derivative corrections

Coefficient functions ED
(p,q)(Φ)(s

2 + t2 + u2)p(s3 + t3 + u3)q

satisfy ED
(p,q)(γΦk) = ED

(p,q)(Φ) for γ ∈ Ed(Z), k ∈ K(Ed)

A lot known for lowest ED
(p,q) from supersymmetry and

internal consistency [Green, Gutperle, Kiritsis, Miller,

Obers, Pioline, Russo, Sethi, Vanhove,...]

ED
(0,0) R4 correction

(

∆− λD(0,0)

)

ED
(0,0) = 0

ED
(1,0) ∇4R4 correction

(

∆− λD(1,0)

)

ED
(1,0) = 0

ED
(0,1) ∇6R4 correction

(

∆− λD(0,1)

)

ED
(0,1) = −

(

ED
(0,0)

)2

Contain perturbative and non-perturbative information
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Example: Type IIB

Hidden symmetry SL(2,R); U-duality SL(2,Z). Scalars

Φ ≡ τ ≡ τ1 + iτ2 = χ+ ie−φ. Define

E[s](τ) =
∑

c,d∈Z

(c,d) 6=(0,0)

τ s2
|cτ + d|2s

= 2ζ(2s)
∑

γ∈B(Z)\SL(2,Z)

[Im(γ · τ)]s

Note: Im τ = τ2 = e−φ = g−1
s . Rewriting is sum

over U-duality orbits.

E[s](τ) is a non-holomorphic Eisenstein series.

E10B
(0,0) = E[3/2] R4 correction [Green, Gutperle]

E10B
(1,0) =

1
2E[5/2] ∇4R4 correction [Green, Vanhove]

E10B
(0,1) ∇6R4 correction. Not Eisenstein, ex-

plicit form by [Green, Miller, Vanhove]
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Relation to field theory loops

Four-graviton process is very special. Low order corrections

R4, ∇4R4 and ∇6R4 enjoy (some) SUSY protection.

=⇒ Only BPS states contribute; no other M-theory states
visible at low energies

Used by [Green, Vanhove; de Wit, Lüst] to perform supergravity
loop calculations including BPS momentum (and winding)

states to find E10
(0,0) and E10

(1,0) for type IIA/IIB.

Aim: Investigate ED
(p,q) for D < 10 by similar methods in

manifestly U-duality covariant formalism

=⇒ Exceptional field theory loops

Quantum aspects of exceptional field theory – p.7



Exceptional field theory
[de Wit, Nicolai; Hull; Waldram et al.;

Hohm, Samtleben; West; ...] t t t t

t

1 3 4 d

2 Ed

Formalism to make hidden Ed(R)
(continuous!) manifest. Combine diffeomorphisms with
gauge transformations.

Consider extended space-time

MD ×Md(αd)

Coordinates xµ, yM with µ = 0, ..., D − 1 and M = 1, ..., d(αd).

d(αd) = dimRαd
: hst. weight rep. on node αd

Rαd
decomposes under ‘gravity line’ GL(d,R) ⊂ Ed(R)

yM = (ym, y[mn], y[m1...m5], . . .) (m,n, ... = 1, ..., d)
✟✯

KK momenta
❍❨
M2 wrappings
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Generalised coordinates yM ∈ Rαd

t t t t

t

1 3 4 d

2 Ed

Ed Rαd
Rα1

SO(5, 5) 16 10

E6 27 27

E7 56 133

E8 248 3875⊕ 1

Generalised coordinates yM have to obey section constraint

∂A

∂yM
∂B

∂yN

∣
∣
∣
∣
Rα1

= 0

for any two fields A(xµ, yM ), B(xµ, yM ). LHS belongs to

Rαd
⊗Rαd

= Rα1 ⊕ . . .
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Section constraint

∂A

∂yM
∂B

∂yN

∣
∣
∣
∣
Rα1

= 0

Possible solution: ‘M-theory’: yM = (ym, ymn, ym1...m5 , . . .)��❅❅ ��❅❅

Alternative: Type IIB [Blair, Malek, Park]. These are the only
two vector space solutions [BK]

Here: ‘Toroidal’ extended space for yM . Conjugate
momenta are quantised charges

ΓM = (nm, n
m1m2 , nn1...n5 , . . .) ∈ Z

d(αd)

Section constraint becomes 1
2-BPS constraint on charges

Γ× Γ̃
∣
∣
Rα1

= 0 ⇒ write Γ× Γ̃ = 0 for brevity
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Amplitudes in ExFT (I)

Exceptional field theory is mainly a classical theory. QFT
treatment complicated due to section constraint.

Consider kinetic term in ExFT ∂φ ∂φ

∫

R11−d

dx

∫

T d(αd)/section

dy∇φ(x, y) · ∇φ(x, y)

y-Fourier expand φ(x, y) =
∑

Γ∈Zd(αd)

φΓ(x)e
iℓ−1Γ·y

∑

Γ∈Z
d(αd)

Γ×Γ=0

∫

R11−d

dx
[

∂µφΓ∂
µφ−Γ − ℓ−2 〈Z(Γ)|Z(Γ)〉φΓφ−Γ

]

︸ ︷︷ ︸
charge dependent mass

✁✕
Section constraint on yM turned into constraint on charges
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Amplitudes in ExFT (II)

〈Z(Γ)|Z(Γ)〉 is BPS-mass and depends on scalar moduli Φ

Momenta in propagators are effectively shifted by
Kaluza–Klein mass

p2 −→ p2 + ℓ−2|Z(Γ)|2

and section constraint Γi × Γj = 0 at every vertex.

⇒ Use this to compute exceptional field theory
amplitudes.
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Amplitudes in ExFT (III)

Loop charge sum
∑

Γl∈Z
d(αd)

Γ〈i×Γj〉=0

affects only adjacent charges.

Can violate section constraint globally!

E.g. Γ = (n1, n2, n3, n
12) on T 3

(0, 0, n3, 0)

(0, 0, 0, n12)

(0, 0, n3,−n12)

(n1, 0, 0, 0)

(−n1, 0, n3, 0)

Scattering of two D = 11 KK-states into two IIB KK-states.

⇒ T-fold transition

Makes sense in ExFT but not in a fixed duality frame
(solution to section constraint)
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Amplitudes in ExFT (IV)

Other example: Γ = (n1, n
23, n12345, n1,1234567) on T 7

(0, n23, 0, 0)

(n1, 0, 0, 0)

(−n1, n
23, 0, 0)

(0, 0, ñ67, 0)

(0, 0, 0, ñ1)

(0, 0, ñ67,−ñ1)
(0, n23,−ñ67, 0)

⇒ S-fold transition

Again makes sense in ExFT but not in a fixed duality frame

Can show that up to two loops: No such complications

Next: Calculate L = 1 and L = 2 assuming reduction to
scalar diagrams as in [Bern et al.; Green, Vanhove]
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One-loop in ExFT (I)

Four-graviton amplitude reduces to scalar box

❅
❅❘

�
�✒

�
�✠

❅
❅■

=
[
iκ2

2 t8t8
∏4

A=1 kAR(kA, eA)
]

A1-loop(k1, k2, k3, k4)

︸ ︷︷ ︸

R4

k1, ǫ1 k2, ǫ2

k3, ǫ3 k4, ǫ4

p,Γ

Pull out kinematic part

A1-loop(k1, k2, k3, k4) = κ2
∫

d11−dp

(2π)11−d

∑

Γ∈Z
d(αd)

Γ×Γ=0

1

((p− k1)2 + ℓ−2|Z|2)

×
1

(p2 + ℓ−2|Z|2)((p− k1 − k2)2 + ℓ−2|Z|2)((p+ k4)2 + ℓ−2|Z|2)

+ perms.
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One-loop in ExFT (II)

Γ = 0 term corresponds to SUGRA in D = 11− d; usual log
threshold contribution ⇒ remove for analytic eff. action

Treat loop integral over d11−dp with usual Schwinger and
Feynman techniques:

A1-loop(k1, k2, k3, k4) = 4πℓ9−d
∑

Γ∈Z
d(αd)
∗

Γ×Γ=0

∞∫

0

dv

v
d−1
2

1∫

0

dx1

x1∫

0

dx2

x2∫

0

dx3

× exp
[π

v

(
(1− x1)(x2 − x3)s+ x3(x1 − x2)t− ℓ−2|Z|2

)]

+ perms.

Low energy from expanding in Mandelstam variables

s = −(k1 + k2)
2, t = −(k1 + k4)

2, u = −(k1 + k3)
2.
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Low energy correction terms

For lowest two orders

A1-loop(s, t, u) = πℓ6
(

ξ(d− 3)Eαd,
d−3
2

+
π2ℓ4(s2 + t2 + u2)

720
ξ(d+ 1)Eαd,

d+1
2

+ . . .

)

✟✟✙ R4 correction

❅■
∇4R4 correction

Notation

ξ(s) = π−s/2Γ(s/2)ζ(s) [completed Riemann zeta]

Eαd,s =
1

2ζ(2s)

∑

Γ 6=0
Γ×Γ=0

|Z(Γ)|−2s [Eisenstein series]

Restricted lattice sum rewritable as single U-duality
orbit!
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Interpretation

Expressions converge for ∇2kR4 term on T d when k > 3−d
2

For k = 0 (R4) and d > 3 (D < 8) find after using
Langlands’ functional relation the correct correction

function ED
(0,0) (including numerical coefficient).

For d = 3 one has to regularise; related to known

one-loop R4 divergence in SUGRA.

For k = 2 (∇4R4) expressions converge. For d ≤ 5 one
obtains only one supersymmetric invariant of [Bossard,

Verschinin]; for 7 ≤ d < 5 full (unique) invariant with
correct coefficient. Should be renormalised. For d = 8
ancestor of 3-loop divergence.

Expressions also ok for d > 8; Kac–Moody case [Fleig, AK]
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Two loops in ExFT (I)

[Bern et al.]: combination of planar and non-planar scalar
diagram at L = 2

�
�✒

❅
❅❘

❅
❅■

�
�✠

�
�
�
�
�❅

❅

❅
❅

�
�✒

❅
❅❘

❅
❅■

�
�✠

After a few pages of calculation

A2-loop(s, t, u) ∼ ℓ6
∑

Γ1,Γ2
Γi×Γj=0

∫ ∞

0

d3Ω

(detΩ)
7−d
2

e−Ωij〈Z(Γi)|Z(Γj)〉

×

[
ℓ4(s2 + t2 + u2)

6
+

ℓ6(s3 + t3 + u3)

72
Φ(0,1)(Ω) + . . .

]
❍❍❍❥

∇4R4 correction
✟✟✟✙

∇6R4
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Two loops in ExFT (II)

After a few pages of calculation (−→ details)

A2-loop,∇4R4

(s, t, u) = 8πℓ10ξ(d− 4)ξ(d− 5)Eαd−1,
d−4
2

This gives the correct function and coefficient for
3 ≤ d ≤ 8 with the right coefficient. Case d = 5 (D = 6)
trickier due to IR divergences

Depends on non-trivial functional identities for
Eisenstein series

Certain doubling of contributions from one loop and two
loops. Correct if one-loop result renormalised

Can be extended to −→ three loops
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Summary and outlook

Explicitly evaluated loop amplitudes in ExFT

Reproduced known E(p,q) in

manifestly U-duality covariant form

Useful tools for dealing with section
constraint

Analysis of differential equation for
higher order corrections and their
wavefront sets, relation to
nilpotent orbits and non-perturbative
instanton effects

Hasse diagram for E7(7)

0

A1

2A1

(3A1)
′

(3A1)
′′

A2

4A1

A1A2

❡

❡

R

R4

D4R4

D6R4

D6R4

Thank you for your attention!

Quantum aspects of exceptional field theory – p.21


	
	Motivation and goal
	String theory scattering amplitudes
	Low energy effective action
	Higher derivative corrections
	Example: Type IIB
	Relation to field theory loops
	Exceptional field theory
	Generalised coordinates $y^Min {�f R}_{alpha _d}$
	Section constraint
	Amplitudes in ExFT (I)
	Amplitudes in ExFT (II)
	Amplitudes in ExFT (III)
	Amplitudes in ExFT (IV)
	One-loop in ExFT (I)
	One-loop in ExFT (II)
	Low energy correction terms
	Interpretation
	Two loops in ExFT (I)
	Two loops in ExFT (II)
	Summary and outlook

