Quantum aspects of exceptional field theory

Axel Kleinschmidt (Albert Einstein Institute, Potsdam)

Talk at "String theory and quantum gravity" Ascona, July 4, 2017

Joint work with Guillaume Bossard

[arXiv:1510.07859, JHEP 1601 (2016) 164]

[and upcoming preprint]

Motivation and goal

Supergravity is the (ultra-)low energy effective action of string or M-theory. Certainly not the full story since theory contains many more states: Winding, wrapping, ...

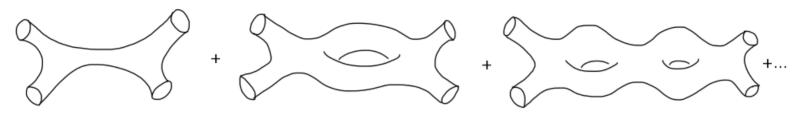
<u>Aim</u>: Study M-theory effective action beyond supergravity, in particular higher derivative corrections in D = 11 - d dimensions with T^d

<u>Tools</u>

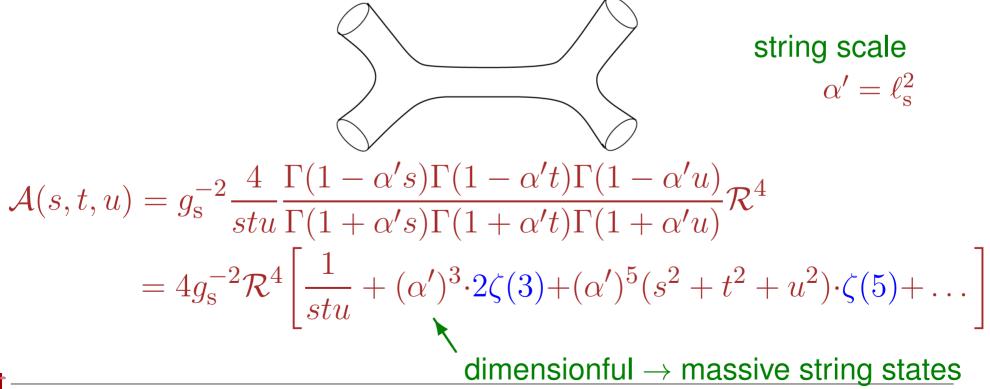
- In Hidden symmetries $E_d(\mathbb{R})$ and U-duality $E_d(\mathbb{Z})$
- Exceptional field theory structures
- Relation between field theory loops and BPS-protected string corrections
- Automorphic forms

String theory scattering amplitudes

Low-energy limit of perturbative amplitudes



E.g. four gravitons (in D = 10 type II) at tree level



Low energy effective action

$$\begin{array}{ll} \text{Higher order } \alpha' & \Longleftrightarrow & \text{higher derivative terms in} \\ \text{contributions to } \mathcal{A} & \text{low energy effective action} \end{array} \\ e^{-1}\mathcal{L} = \ell^{2-D} \left[R - \frac{1}{2} G_{IJ}(\Phi) \partial \Phi^{I} \partial \Phi^{J} + \ldots \right] \begin{bmatrix} \text{Type IIB} \\ \Phi = \chi + ie^{-\phi}, & e^{\phi} = g_{\text{s}} \\ \mathcal{E}^{10B}_{(0,0)}(\Phi) = 2\zeta(3)e^{-3\phi/2} + \ldots \\ + \ell^{8-D} \left[\mathcal{E}^{D}_{(0,0)}(\Phi)R^{4} + \ldots \right] + \ell^{12-D} \left[\mathcal{E}^{D}_{(1,0)}(\Phi)\nabla^{4}R^{4} + \ldots \right] \\ + \ell^{14-D} \left[\mathcal{E}^{D}_{(0,1)}(\Phi)\nabla^{6}R^{4} + \ldots \right] + \ldots \end{aligned}$$

Scalar moduli fields Φ belong to quantum moduli space

 $E_d(\mathbb{Z}) \setminus E_d(\mathbb{R}) / K(E_d)$ (d = 11 - D)

 $K(E_d)$:max. compact subgroup of CJ symmetry $E_d(\mathbb{R})$ [Cremmer, Julia] $E_d(\mathbb{Z})$:Discrete U-duality [Hull, Townsend]

Higher derivative corrections

Coefficient functions $\mathcal{E}^{D}_{(p,q)}(\Phi)(s^2 + t^2 + u^2)^p(s^3 + t^3 + u^3)^q$

- satisfy $\mathcal{E}^{D}_{(p,q)}(\gamma \Phi k) = \mathcal{E}^{D}_{(p,q)}(\Phi)$ for $\gamma \in E_d(\mathbb{Z})$, $k \in K(E_d)$
- A lot known for lowest $\mathcal{E}_{(p,q)}^D$ from supersymmetry and internal consistency [Green, Gutperle, Kiritsis, Miller, Obers, Pioline, Russo, Sethi, Vanhove,...]
 - $\begin{aligned} \mathcal{E}_{(0,0)}^{D} & R^{4} \text{ correction} & \left(\Delta \lambda_{(0,0)}^{D}\right) \mathcal{E}_{(0,0)}^{D} = 0 \\ \mathcal{E}_{(1,0)}^{D} & \nabla^{4} R^{4} \text{ correction} & \left(\Delta \lambda_{(1,0)}^{D}\right) \mathcal{E}_{(1,0)}^{D} = 0 \\ \mathcal{E}_{(0,1)}^{D} & \nabla^{6} R^{4} \text{ correction} & \left(\Delta \lambda_{(0,1)}^{D}\right) \mathcal{E}_{(0,1)}^{D} = \left(\mathcal{E}_{(0,0)}^{D}\right)^{2} \end{aligned}$
- Contain perturbative and non-perturbative information

Example: Type IIB

Hidden symmetry $SL(2,\mathbb{R})$; U-duality $SL(2,\mathbb{Z})$. Scalars $\Phi \equiv \tau \equiv \tau_1 + i\tau_2 = \chi + ie^{-\phi}$. Define

$$E_{[s]}(\tau) = \sum_{\substack{c,d\in\mathbb{Z}\\(c,d)\neq(0,0)}} \frac{\tau_2^s}{|c\tau+d|^{2s}} = 2\zeta(2s) \sum_{\gamma\in B(\mathbb{Z})\backslash SL(2,\mathbb{Z})} [\operatorname{Im}(\gamma\cdot\tau)]_{1.75}$$

Note: Im $\tau = \tau_2 = e^{-\phi} = g_s^{-1}$. Rewriting is sum over U-duality orbits.

 $E_{[s]}(\tau)$ is a non-holomorphic Eisenstein series.

$$\left[\operatorname{Im}(\gamma \cdot \tau)\right]^{2}$$

 $\backslash 1S$

 $\mathcal{E}_{(0,0)}^{10B} = E_{[3/2]}$ $\mathcal{E}_{(1,0)}^{10B} = \frac{1}{2}E_{[5/2]}$ $\mathcal{E}_{(0,1)}^{10B}$ R^4 correction [Green, Gutperle] $\nabla^4 R^4$ correction [Green, Vanhove] $\nabla^6 R^4$ correction. Not Eisenstein, explicit form by [Green, Miller, Vanhove]

Relation to field theory loops

Four-graviton process is very special. Low order corrections R^4 , $\nabla^4 R^4$ and $\nabla^6 R^4$ enjoy (some) SUSY protection.

 \implies Only BPS states contribute; no other M-theory states visible at low energies

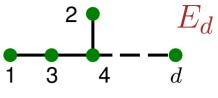
Used by [Green, Vanhove; de Wit, Lüst] to perform supergravity loop calculations including BPS momentum (and winding) states to find $\mathcal{E}_{(0,0)}^{10}$ and $\mathcal{E}_{(1,0)}^{10}$ for type IIA/IIB.

<u>Aim</u>: Investigate $\mathcal{E}_{(p,q)}^{D}$ for D < 10 by similar methods in manifestly U-duality covariant formalism

 \implies Exceptional field theory loops

Exceptional field theory

[de Wit, Nicolai; Hull; Waldram et al.; Hohm, Samtleben; West; ...]



Formalism to make hidden $E_d(\mathbb{R})$ (continuous!) manifest. Combine diffeomorphisms with gauge transformations.

Consider extended space-time

 $\mathcal{M}^D imes \mathcal{M}^{d(\alpha_d)}$

Coordinates x^{μ}, y^{M} with $\mu = 0, ..., D - 1$ and $M = 1, ..., d(\alpha_{d})$.

 $d(\alpha_d) = \dim \mathbf{R}_{\alpha_d}$: hst. weight rep. on node α_d

 \mathbf{R}_{α_d} decomposes under 'gravity line' $GL(d, \mathbb{R}) \subset E_d(\mathbb{R})$

$$y^M = (y^m, y_{[mn]}, y_{[m_1...m_5]}, ...)$$
 $(m, n, ... = 1, ..., d)$
K momenta M2 wrappings

Generalised coordinates $y^M \in \mathbf{R}_{\alpha_d}$

E_d	\mathbf{R}_{lpha_d}	\mathbf{R}_{lpha_1}	
SO(5,5)	16	10	2 • E _d
E_6	27	$\overline{27}$	$\begin{array}{c} \bullet \\ 1 \\ 3 \\ 4 \\ d \end{array}$
E_7	56	133	
E_8	248	${\bf 3875} \oplus {\bf 1}$	

Generalised coordinates y^M have to obey section constraint

$$\frac{\partial A}{\partial y^M} \left. \frac{\partial B}{\partial y^N} \right|_{\mathbf{R}_{\alpha_1}} = 0$$

for any two fields $A(x^{\mu}, y^{M})$, $B(x^{\mu}, y^{M})$. LHS belongs to

$$\mathbf{R}_{lpha_d}\otimes\mathbf{R}_{lpha_d}=\mathbf{R}_{lpha_1}\oplus\ldots$$

Section constraint

$$\frac{\partial A}{\partial y^M} \frac{\partial B}{\partial y^N} \bigg|_{\mathbf{R}_{\alpha_1}} = 0$$

Possible solution: 'M-theory': $y^M = (y^m, y_{pn}, y_{pn}, \dots)$

Alternative: Type IIB [Blair, Malek, Park]. These are the only two vector space solutions [BK]

Here: 'Toroidal' extended space for y^M . Conjugate momenta are quantised charges

$$\Gamma_M = (n_m, n^{m_1 m_2}, n^{n_1 \dots n_5}, \dots) \in \mathbb{Z}^{d(\alpha_d)}$$

Section constraint becomes $\frac{1}{2}$ -BPS constraint on charges

$$\Gamma \times \tilde{\Gamma} |_{\mathbf{R}_{\alpha_1}} = 0 \qquad \Rightarrow \quad \text{write } \Gamma \times \tilde{\Gamma} = 0 \text{ for brevity}$$

Amplitudes in ExFT (I)

Exceptional field theory is mainly a classical theory. QFT treatment complicated due to section constraint.

Consider kinetic term in ExFT $\partial \phi \partial \phi$

y-Fourier expand
$$\phi(x, y) = \sum_{\Gamma \in \mathbb{Z}^{d(\alpha_d)}} \phi_{\Gamma}(x) e^{i\ell^{-1}\Gamma \cdot y}$$

$$\sum_{\substack{\Gamma \in \mathbb{Z}^{d(\alpha_d)} \\ \Gamma \times \Gamma = 0}} \int dx \left[\partial_{\mu} \phi_{\Gamma} \partial^{\mu} \phi_{-\Gamma} - \ell^{-2} \langle Z(\Gamma) | Z(\Gamma) \rangle \phi_{\Gamma} \phi_{-\Gamma} \right]$$

charge dependent mass

Section constraint on y^M turned into constraint on charges

Amplitudes in ExFT (II)

 $\langle Z(\Gamma)|Z(\Gamma)\rangle$ is BPS-mass and depends on scalar moduli Φ

Momenta in propagators are effectively shifted by Kaluza–Klein mass

$$p^2 \longrightarrow p^2 + \ell^{-2} |Z(\Gamma)|^2$$

and section constraint $\Gamma_i \times \Gamma_j = 0$ at every vertex.

 \Rightarrow Use this to compute exceptional field theory amplitudes.

Amplitudes in ExFT (III)

Loop charge sum $\sum_{\substack{\Gamma_l \in \mathbb{Z}^{d(\alpha_d)} \\ \Gamma_{\langle i} \times \Gamma_j \rangle = 0}}$ affects only adjacent charges.

Can violate section constraint globally!

E.g. $\Gamma = (n_1, n_2, n_3, n^{12})$ on T^3

$$(n_1, 0, 0, 0) \longrightarrow (0, 0, n_3, 0) \longrightarrow (0, 0, 0, n^{12}) (0, 0, n_3, 0) \longrightarrow (0, 0, n_3, -n^{12})$$

Scattering of two D = 11 KK-states into two IIB KK-states.

\Rightarrow T-fold transition

Makes sense in ExFT but not in a fixed duality frame (solution to section constraint)

Amplitudes in ExFT (IV)

Other example: $\Gamma = (n_1, n^{23}, n^{12345}, n^{1,1234567})$ on T^7

$$(n_{1}, 0, 0, 0) \xrightarrow{(0, n^{23}, 0, 0)} (0, n^{23}, 0, 0) \xrightarrow{(0, 0, \tilde{n}_{67}, 0)} (0, 0, \tilde{n}_{67}, 0) \xrightarrow{(0, 0, 0, \tilde{n}^{1})} (0, 0, \tilde{n}_{67}, -\tilde{n}^{1})$$

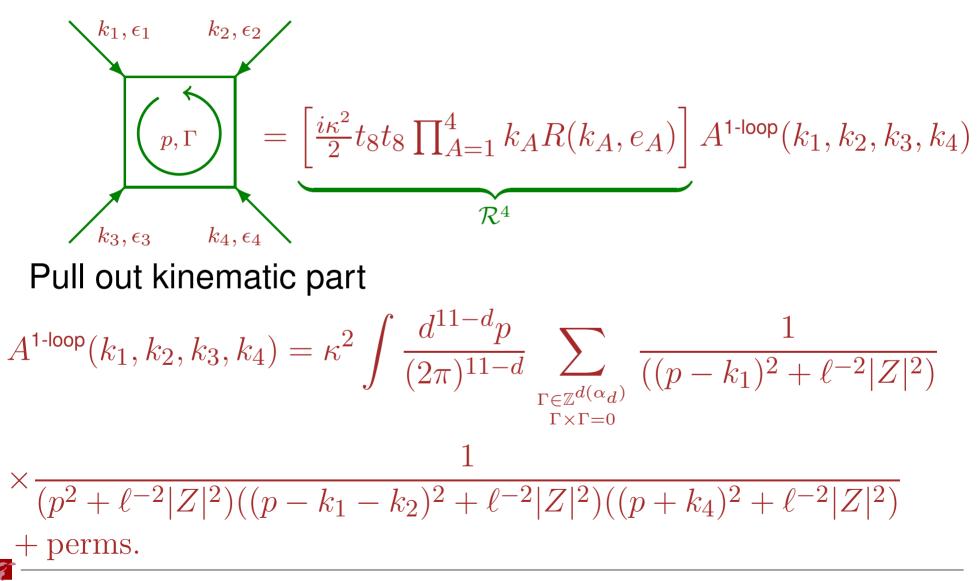
\Rightarrow S-fold transition

Again makes sense in ExFT but not in a fixed duality frame Can show that up to two loops: No such complications

Next: Calculate L = 1 and L = 2 assuming reduction to scalar diagrams as in [Bern et al.; Green, Vanhove]

One-loop in ExFT (I)

Four-graviton amplitude reduces to scalar box



One-loop in ExFT (II)

 $\Gamma = 0$ term corresponds to SUGRA in D = 11 - d; usual log threshold contribution \Rightarrow remove for analytic eff. action

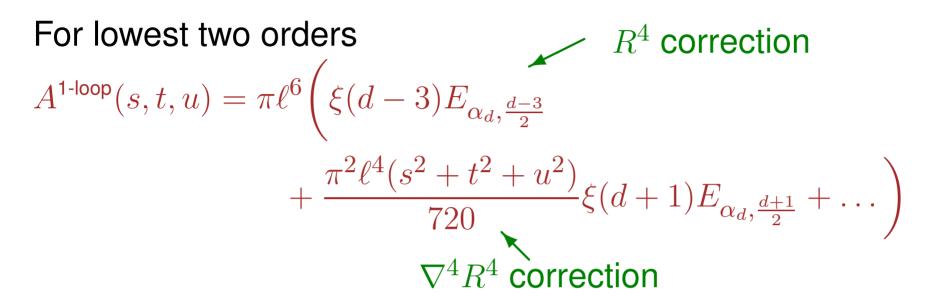
Treat loop integral over $d^{11-d}p$ with usual Schwinger and Feynman techniques:

$$A^{1-\text{loop}}(k_1, k_2, k_3, k_4) = 4\pi \ell^{9-d} \sum_{\substack{\Gamma \in \mathbb{Z}_*^{d(\alpha_d)} \\ \Gamma \times \Gamma = 0}} \int_0^\infty \frac{dv}{v^{\frac{d-1}{2}}} \int_0^1 dx_1 \int_0^{x_1} dx_2 \int_0^{x_2} dx_3$$
$$\times \exp\left[\frac{\pi}{v} \left((1-x_1)(x_2-x_3)s + x_3(x_1-x_2)t - \ell^{-2}|Z|^2\right)\right] + \text{perms.}$$

Low energy from expanding in Mandelstam variables

$$s = -(k_1 + k_2)^2$$
, $t = -(k_1 + k_4)^2$, $u = -(k_1 + k_3)^2$.

Low energy correction terms



Notation

- $\xi(s) = \pi^{-s/2} \Gamma(s/2) \zeta(s)$ [completed Riemann zeta]
- $E_{\alpha_d,s} = \frac{1}{2\zeta(2s)} \sum_{\substack{\Gamma \neq 0 \\ \Gamma \times \Gamma = 0}} |Z(\Gamma)|^{-2s}$ [Eisenstein series]

Restricted lattice sum rewritable as single U-duality orbit!

Interpretation

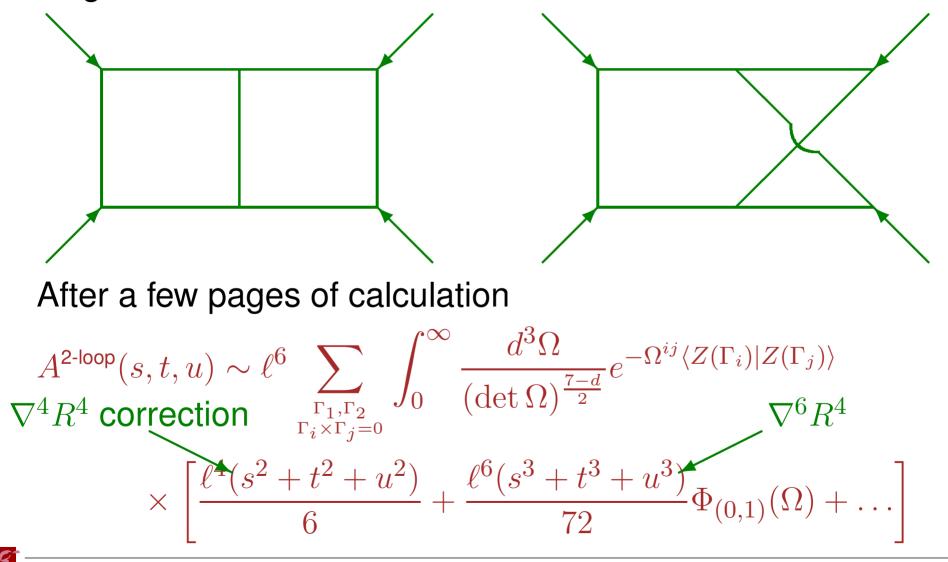
Expressions converge for $\nabla^{2k} R^4$ term on T^d when $k > \frac{3-d}{2}$

- For k = 0 (R^4) and d > 3 (D < 8) find after using Langlands' functional relation the correct correction function $\mathcal{E}_{(0,0)}^D$ (including numerical coefficient). For d = 3 one has to regularise; related to known one-loop R^4 divergence in SUGRA.
- For k = 2 ($\nabla^4 R^4$) expressions converge. For $d \le 5$ one obtains only one supersymmetric invariant of [Bossard, Verschinin]; for $7 \le d < 5$ full (unique) invariant with correct coefficient. Should be renormalised. For d = 8 ancestor of 3-loop divergence.

Expressions also ok for d > 8; Kac–Moody case [Fleig, AK]

Two loops in ExFT (I)

[Bern et al.]: combination of planar and non-planar scalar diagram at L = 2



Two loops in ExFT (II)

After a few pages of calculation (\longrightarrow details)

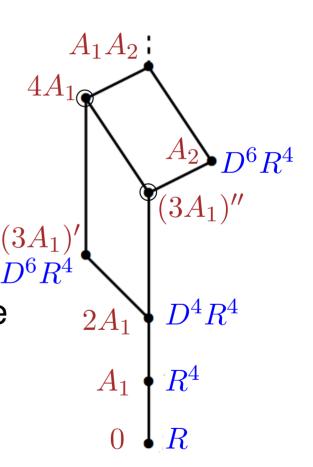
$$A^{2\text{-loop},\nabla^4 R^4}(s,t,u) = 8\pi\ell^{10}\xi(d-4)\xi(d-5)E_{\alpha_{d-1},\frac{d-4}{2}}(d-5)E_{\alpha_{d-1},\frac{d-4}$$

- This gives the correct function and coefficient for $3 \le d \le 8$ with the right coefficient. Case d = 5 (D = 6) trickier due to IR divergences
- Depends on non-trivial functional identities for Eisenstein series
- Certain doubling of contributions from one loop and two loops. Correct if one-loop result renormalised
- Can be extended to \longrightarrow three loops

Summary and outlook

- Explicitly evaluated loop amplitudes in ExFT
- Reproduced known $\mathcal{E}_{(p,q)}$ in manifestly U-duality covariant form
- Useful tools for dealing with section constraint
- Analysis of differential equation for higher order corrections and their wavefront sets, relation to
 nilpotent orbits and non-perturbative instanton effects

Thank you for your attention!



Hasse diagram for $E_{7(7)}$

