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Introduction

QM and topological strings

Long history of relations between QM and strings:

I Gauge theories & integrable systems
[Nekrasov-Shatashvili]

I Topological strings & integrable hierarchies
[Aganagic-Dijkgraaf-Klemm-Mariño-Vafa]

I Topological strings & spectral determinants
[Grassi-Hatsuda-Mariño]

Our question:

Can the stringy machinery be applied even in QM problems
without a stringy counterpart?
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The double-well oscillator

WKB periods

An example: consider the QM problem
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ψ′′ + V ψ = ξψ, V (x) =

x2
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The double-well oscillator

WKB periods

WKB quantization: period around classically allowed (A) region∫ a

b
p(x ; ξn) dx ∼ π~ n, p(x ; ξ) :=

√
2
√
ξ − V (x).

�b b a�a�a
AA

BB
⇠⇠



Quantum mechanics and the holomorphic anomaly

The double-well oscillator

WKB periods

All orders WKB: The Schroedinger equation defines a quantum
differential on the curve y2 = p2(x)

P(x ; ξ, ~) = p(x ; ξ) +
∞∑
n=1

~2npn(x ; ξ)

through the WKB wavefunction

ψ(x ; ξ) = P(x ; ξ, ~)−1/2 e
i
~
∫ x P(x ′;ξ,~) dx

This defines a quantum period giving the all orders
Bohr-Sommerfeld condition

ν(ξ, ~) :=
1

2πi

∮
A
P(x ; ξ, ~) dx → ν(ξn, ~) = n

yielding the (~-)perturbative energy levels
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The double-well oscillator

WKB periods

Periods as an ~ series: use the Ricatti equation

Q := P + i~ ∂xP
2P

&
Schroedinger eq.

 =⇒ Q2 − i~∂xQ = p2

and calculate recursively pn(x ; ξ, ~)

After integration, one gets the period as an ~ expansion

ν(ξ, ~) =
1

2πi

∮
A
P(x ; ξ, ~) dx = t(ξ) +

∞∑
n=1

tn(ξ) ~2n
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The double-well oscillator

WKB periods

Not perturbation theory!
WKB is a two parameter problem

I Perturbative in ~
I Exact in ξ

I Coefficients have (2n)! divergence (as in string theory)

One can integrate by brute-force,

t(ξ) =

√√
32ξ + 1

12π

[
E

(
2− 2√

32ξ + 1

)
−

−
(√

32ξ − 1
)

K

(
2− 2√

32ξ + 1

)]
but the higher tn(ξ) become unmanageable quickly!
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The double-well oscillator

WKB periods

A/B periods: we can also compute the B-cycle period
corresponding to tunnelling effects

∂F

∂ν
:= −i

∮
B
P(x ; ξ, ~) dx , ν :=

1

2πi

∮
A
P(x ; ξ, ~) dx

and define a quantum free energy F as in SW theory

F (ν, ~) =
∞∑
n=0

Fn(ν)~2n = F0(ν) + F1(ν)~2 + O(~4)

The modulus of the elliptic curve y2 = p2(x) is related to the
prepotential F0(ν) by

τ(ν) = ∂ννF0(ν)

Can we use this structure to say more about F (τ, ~)?
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The double-well oscillator

Holomorphic anomaly

Upgrade Fn(τ) to modular forms Fn(τ, τ̄) such that

lim
τ̄→∞

Fn(τ, τ̄) = Fn(τ)

They satisfy the (refined) holomorphic anomaly equations [BCOV]

∂Fn(τ, τ̄)

∂Ê2

= − Y 2

192

n−1∑
r=1

DτFr DτFn−r , n ≥ 1

in the NS limit [Huang-Klemm, Krefl-Walcher]

I Exact in τ (and hence ν)

I F0 enters as the Yukawa Y = ∂νννF0

I All the anholomorphic dependence is captured in Ê2(τ, τ̄)

I S-duality relates different problems (DW ↔ quartic oscillator)
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The double-well oscillator

Holomorphic anomaly

Solving the recursion:

I There is a holomorphic ambiguity at every order
→ Fix it with universal behaviour near singular points

I For n ≥ 2 the expressions are nicely algebraic

F1(τ, τ̄) = −
1

24
log

(
K2

2 − K4

)
K2

4

16K6
2

F2(τ, τ̄) = −Y 2 5Ê2

(
2K2

2 − 3K4

)
2 + 158K5

2 − 330K4K3
2 + 135K2

4 K2

2211840K2
2

. . .

with

K2(τ) = ϑ4
3(τ) + ϑ4

4(τ), K4(τ) = ϑ8
2(τ), Ê2(τ, τ̄) = E2(τ)−

3

πImτ

I Most efficient way so far to compute all orders WKB
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The double-well oscillator

Holomorphic anomaly

Some motivation:

I QM interpretation of holomorphic anomaly [Witten]

I Invert reasoning to get HA for QM problems

I Expected in problems related to topological strings
(modified Mathieu potential, quantized mirror curves...)

I Tested in other genus one examples
(cubic, quartic oscillator)

I Proof for the HA in the NS limit of top. strings in [Grassi]
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Beyond perturbation

Beyond perturbation: transseries ansatz

F = F (0) + e−
A
~ F (1) + e−

2A
~ F (2) + . . .

I Option A: Old way, use exact quantization [Zinn-Justin, Voros]

1 + exp

(
i

~

∮
A

P(x ; ξ, ~) dx

)
= i εparity exp

(
i

2~

∮
B

P(x ; ξ, ~) dx

)
I Option B: Holomorphic anomaly

Upgrade recursion to full differential equation
(as in [BCOV, Couso-Edelstein-Schiappa-Vonk])

∂Ê2

(
F − F

(0)
0

)
= − Y 2

192

[
Dτ
(
F − F

(0)
0

)]2

and solve order by order in e−
A
~ ... Work in progress!
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Beyond perturbation

An application

An application: precision tests of resurgence

I HA: get F
(0)
n up to very high n

I Resurgence: large order should be controlled by transseries

F (0)
n =

1

iπ

Γ(2n + 2)

A2n+2

[
F

(1)
0 +

F
(1)
1

n
+ O

(
1

n2

)]
,

Example: the action A is a (classical) period

Again: not perturbation theory, but all orders WKB!
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Conclusions and outlook

Conclusions

�3 Periods of QM potentials with genus one spectral curves can
be computed efficiently with the RHA

�3 DW, quartic, cubic, Mathieu, q. mirror curves...

�3 Access to high order ~ corrections → tests of resurgence

� Get a better understanding of the transseries
In particular, go beyond the first instanton correction

� Borel resummation + transseries = exact quantization?

� Higher genus spectral curves
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